
XiNets: Efficient Neural Networks for tinyML
Supplementary Material

1. Benchmarking details

1.1. Training Procedure

On CIFAR-100, we trained XiNet for 150 epochs
using the LAMB optimizer [5] with a learning rate
of 0.004. As augmentation strategies, we used mixup
(p = 0.05) [7], cutmix (p = 0.05) [6], and auto-
augment (M = 5 ± 0.55) [2]. Training scripts are
available in the supplementary materials, in the folder
classification. Refer to the README for instructions
on how to run the experiments.

On VOC-2012 and COCO, we trained XiNet for
100 and 50 epochs respectively, using the SGD opti-
mizer with a learning rate of 0.01. The augmentation
strategy is the same as proposed in Yolov7 [4]. Train-
ing scripts and configurations used are again avail-
able in the supplementary materials, in the object

detection folder.

1.2. Comparison with MCUNet

The main goal of our comparison with the baselines
is to highlight the benefits of the neural architecture’s
energy efficiency and computational resources. There-
fore, we want to isolate the training procedure as much
as possible and focus on the architectural design only,
thus, using the same experimental protocol for all net-
works. Moreover, applying a novel training strategy to
all the baselines should lead to similar relative improve-
ments in performance, thus not compromising the con-
clusions drawn in the paper. The training procedure
for MCUNet requires multiple stages. As the code for
this training strategy is unavailable, and we want to
avoid incorrectly representing results due to unnoticed
reproducibility errors, we trained all the baselines from
scratch after carefully optimizing the training hyper-
parameters (Table 1 shows the used search space) using
the Or̀ıon toolkit [1].

1.3. Dataset choice

To benchmark XiNet on image classification, we
chose to use CIFAR-100 due to its suitability for high-
lighting the backbone’s capabilities in low-resource

regimes. While training mobile-oriented networks on
ImageNet could improve their performance on other
benchmarks through transfer learning, we opted for
CIFAR-100 to ensure that the classification head did
not overshadow the backbone’s modelling power. Ima-
genet would require a significant portion of the network
to map embeddings to its large number of classes, lim-
iting the potential of the whole pipeline to fit into a
tiny hardware platform without recurring to special-
ized neural architecture search strategies or training
loops. To further validate XiNet’s image processing
design, we benchmarked its performance on the VOC-
2012 and MS-COCO benchmarks.

2. Attention mechanism ablation study

XiNets leverages an attention mechanism that com-
bines channel and spatial attention while minimiz-
ing complex convolutional operations. Specifically, we
adapt the mixed attention module to generate a fea-
ture map with identical dimensions (width, height, and
output channels Wout×Hout×Cout) as the output fea-
ture map of a block. Thus, it is possible to perform
an element-wise multiplication between feature maps,
avoiding computationally expensive tensor-vector and
tensor-matrix multiplication operations that may not
be optimized on embedded devices.

We benchmarked different ways to generate the at-
tention map to find the best trade-off between com-
putational cost and performance. Following are the
different techniques and an analysis of their structures:

• The most naive implementation for this kind of
mixed attention relies on a single 2D convolu-
tion from Wout ×Hout ×Cout to the same dimen-
sionality, followed by a softmax activation and an
element-wise product with the generating tensor,
as depicted in Fig. 1.

1



CutMix MixUp Weight decay Learning rate Optimizer
uniform(0, 0.2) uniform(0, 0.2) loguniform(0.01, 0.001) loguniform(0.1, 0001) lamb, sgd, adam

Table 1. Search space used for the different hyperameters optimized using Bayesian optimization. Notation follows the one
from the Or̀ıon toolkit.

Figure 1. Naive attention module implementation

This approach approximates channel attention
with a single convolution (as in the case of a
squeeze and excitation block [3]) and spatial at-
tention by providing a K×K higher receptive field
to the convolutional block. The main drawback of
this approach is the considerable parameter count
resulting from using the same K as the convolu-
tional block. It would result in

MACatt

MACblock
=

γK2

K2 + 1

A plausible range for the compression factor γ
is [3; 6]; therefore, this attention implementation
would increase the number of operations of the
block by 2.7× to 5.4×, making it non-practical in
an actual network design.

• To reduce the number of operations required by
the naive implementation, one potential solution
is to compute the approximated attention map
using only a subset of channels (e.g., Cout/γ) as
illustrated in Figure 2.

Figure 2. Stride-based attention module implementation

This approach may result in a lower increase in ac-
curacy, as it is equivalent to computing an SE [3]

tensor over a small subset of channels. Nonethe-
less, it would only require

MACatt

MACblock
=

K2

K2 + 1

While this increases the block operations of the at-
tention module by 90%, it also introduces a poten-
tially non-optimized or unsupported striding oper-
ation into the module.

• A pointwise convolution can be used as a sub-
stitute for the striding operation to reduce the
number of channels before computing the atten-
tion map (Fig. 3). This choice has the advantage
that all input channels are used in the attention
module computation. Additionally, the channel
attention mechanism mirrors what happens with
an SE block [3], where a high number of channels
gets reduced using an FC layer.

Figure 3. PW-based attention module implementation

Another advantage of this implementation is that
a non-linearity can be inserted after the com-
pression PW convolution. Operation count is
only marginally increasing compared to the stride-
based implementation at

MACatt

MACblock
=

Wout ×Hout
C2

out

γ × (1 +K2)

Wout ×Hout × C2
out

γ (1 +K2)
= 1

It is precisely doubling the cost of the base con-
volutional block. While this approach shows a
slightly higher operation count than the stride-
based implementation, it avoids using a striding
operator, which could slow down execution de-
pending on the target platform. Moreover, RAM



usage is significantly reduced, as all operations in
the block target one tensor (input or output) of full
sizeWout×Hout×Cout, and one of compressed size
Wout × Hout × Cout/γ. At a certain point, other
implementations will require the presence in RAM
of two full-size tensors for input and output.

• It is possible to remove the additional operations
required by the previous implementation by split-
ting the computation of the firstWout×Hout×Cout

tensor into two partial tensors (Fig. 4), one with
size Wout ×Hout × Cout/γ, which will be used to
compute the attention map, and the remaining one
of size Wout ×Hout × Cout × (γ − 1)/γ.

Figure 4. Concatenation-based attention module implemen-
tation

This implementation has the same number of op-
erations as the stride-based one while trading a
higher fragmentation (number of sub-tensors com-
puted per block) for the striding process. While
the number of operations is lower, this approach
again suffers from the inability to consider all fea-
ture map channels in the attention map computa-
tion.

• Another approach that has been tested relies in-
stead on computing the attention map directly on
the compressed tensor in the block instead of using
the output tensor (Fig 5).

Figure 5. Compression-based attention module implemen-
tation

While this is optimal from the point of view of op-
eration count, operation type, and network frag-
mentation, this approach does not provide a K2

increase in the receptive field of the block.

We test the described attention modules with a 5-
block network, first trained without any attention mod-
ule, and report the relative accuracy and latency (on
an STM32F7 MCU).

Module MAC latency MAC/s Gain
None 1.8M 13.1ms 137.7M +0%
Conv2D 11.5M 79.9ms 143.9M +24%
Stride 3.2M 27.7ms 115.7M +13%
Pointwise 3.3M 27.0ms 122.4M +20%
Pointwise (relu) 3.3M 27.0ms 122.1M -1%
Concatenation 3.2M 30.7ms 104.4M +21%
Compression 3.2M 26.6ms 120.5M +17%

3. Kernel size and aligned accesses

As we explained in the main paper, the efficiency of
an operator is determined by several factors, including
Arithmetic Intensity, the ratio of the number of oper-
ations to the number of memory accesses related to an
operation. It follows that optimizing the number of
memory accesses can improve efficiency. One effective
way to achieve this, especially on platforms with SIMD
operations for multiple byte load/store, is to use a ker-
nel size K multiple of the number of bytes loaded by a
single SIMD operation. For instance, if a platform can
load 4 kernel values in uint8 with a single 32-bit load
operation, then K must be a multiple of 4, e.g., 4× 2.

We tested different configurations on a subset of the
platforms to see if this optimization translated into an
actual increase in efficiency in practice.

As we can observe in Table 3, this optimization leads
to actual benefits on some platforms but does not sig-
nificantly benefit others, and in some cases, the perfor-
mance was even degraded. Particularly informative is
the case of the Kendryte K210, which shows how some
platforms and/or runtimes can be largely optimized to
perform convolutions only with commonly used ker-
nels. For these reasons, we chose not to vary the kernel
size and to keep it fixed to 3×3 throughout the network
to maximize compatibility with as many platforms as
possible.

4. Full efficiency results for considered
platforms

Tables 2 and 4 report experimental results for effi-
ciency measures for the tested platforms. We show the
number of operations per second performed by each
platform, the number of operations completed per mJ
of energy, and the relative efficiency obtained. The



notation ”NS” in the following tables specifies that the
compiler or runtime did not support the operator being
tested.

Figure 6. Average efficiency across all platforms for tested
operators

3x3 MOPS/ms 4x2 MOPS/ms Gain
RPI4 91.45 107.95 18.04%
RPI3 35.55 43.98 23.72%
H7 2.54 2.24 -11.63%
L4 0.54 0.49 -9.80%
K210 4.55 0.26 -94.27%

Table 3. Comparison of efficiency using SIMD-optimized
kernels across different edge devices.

References

[1] Xavier Bouthillier, Christos Tsirigotis, François
Corneau-Tremblay, Thomas Schweizer, Lin Dong,
Pierre Delaunay, Fabrice Normandin, Mirko Bronzi,
Dendi Suhubdy, Reyhane Askari, Michael Noukhovitch,
Chao Xue, Satya Ortiz-Gagné, Olivier Breuleux, Ar-
naud Bergeron, Olexa Bilaniuk, Steven Bocco, Hadrien
Bertrand, Guillaume Alain, Dmitriy Serdyuk, Peter
Henderson, Pascal Lamblin, and Christopher Beckham.
Epistimio/orion: Asynchronous Distributed Hyperpa-
rameter Optimization, 2022. 1

[2] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané,
Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 113–123, 2019. 1

[3] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7132–7141, 2018.
2

[4] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors, 2022.
1

[5] Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv: Learning, 2019. 1

[6] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Young Joon Yoo.
Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 6022–6031, 2019. 1

[7] Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk mini-
mization. ArXiv, abs/1710.09412, 2017. 1



2D Convolution Pointwise
Platform MAC/s MAC/mJ Eff MAC/s MAC/mJ Eff
L452 31.3M 1.40M 100% 29.87M 1.34M 95%
H743 238.4M 1.86M 100% 267.3M 2.08M 112%
nRF52 19.5M 2.71M 100% 19.24M 2.67M 98%
GAP8 4823M 16.55M 100% 1332M 4.57M 28%
K210 1314M 2.09M 100% 1301M 2.07M 99%
rPi 3 5732M 1.61M 100% 3514M 0.99M 61%
rPi 4 15820M 3.13M 100% 8309M 1.64M 53%
AVG: 100% 78% %

Depthwise Patch / Grouped
Platform MAC/s MAC/mJ Eff MAC/s MAC/mJ Eff
L452 7.07M 0.32M 22% 5.30M 0.41M 25%
H743 41.59M 0.32M 17% 48.35M 0.38M 20%
nRF52 5.52M 0.77M 28% 4.53M 0.63M 23%
GAP8 1445M 4.96M 29% 6840M 23.47M 142%
K210 902M 1.44M 69% 152M 0.24M 12%
rPi 3 1478M 0.42M 26% 381M 0.11M 7%
rPi 4 3122M 0.62M 19% 882M 0.17M 6%
AVG: 30% 35%

Table 2. Convolutional operators efficiency

Transposed Convolution NN Interpolation
Platform MAC/s MAC/mJ Eff MAC/s MAC/mJ Eff
L452 6.82M 0.31M 22% 6.26M 0.28M 20%
H743 62.86M 0.49M 26% 74.80M 0.58M 31%
nRF52 4.10M 0.57M 21% 4.68M 0.65M 24%
GAP8 1952M 6.70M 40% 2601M 8.92M 54%
K210 54M 0.09M 4% 269M 0.43M 20%
rPi 3 541M 0.15M 9% 524M 0.15M 9%
rPi 4 1677M 0.33M 11% 2372M 0.47M 15%
AVG: 19% 25%

Bilinear Interpolation PixelShuffle/ Depth2Space
Platform MAC/s MAC/mJ Eff MAC/s MAC/mJ Eff
L452 13.46M 0.60M 43% NS NS
H743 111.86M 0.87M 47% NS NS
nRF52 8.58M 1.19M 44% 2.73M 0.38M 14%
GAP8 2550M 8.75M 53% 341M 4.30M 26%
K210 157M 0.25M 12% NS NS
rPi 3 494M 0.14M 9% 622M 0.18M 11%
rPi 4 2203M 0.44M 14% 2804M 0.55M 18%
AVG: 30% 17%

Table 4. Upsampling operators efficiency


