LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction - Supplementary Material

Mohammad Samiul Arshad and William J. Beksi
Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX, USA
mohammadsamiul.arshad@mavs.uta.edu, william.beksi@uta.edu

This document includes supplementary material for the paper LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction. In Fig. 1, we show a qualitative comparison of occluded surface reconstruction. Examples of failed reconstructions are displayed in Fig. 2. More qualitative comparisons between LIST and the baseline models using the ShapeNet dataset are highlighted in Fig. 3. The results of LIST reconstructions using distinct views of the same object are provided in Fig. 4, Fig. 5, and Fig. 6. Finally, a video presents 360-degree views of the reconstructions.

1. Evaluation Metrics

Chamfer Distance (CD): The chamfer distance (CD) between two meshes is defined as

\[\text{CD}(y_{GT}, y_{pred}) = \sum_{a \in y_{pred}} \min_{b \in y_{gt}} \|a - b\| + \sum_{b \in y_{gt}} \min_{a \in y_{pred}} \|b - a\|, \]

where, \(y_{GT}\) and \(y_{pred}\) are two point clouds extracted from the surface of the ground-truth and reconstructed object, respectively.

Intersection over Union (IoU): The volumetric intersection over union (IoU) is defined as the quotient of the volume of the intersection of two meshes and the volume of their union,

\[\text{IoU}(M_{pred}, M_{GT}) = \frac{|M_{pred} \cap M_{GT}|}{|M_{pred} \cup M_{GT}|}. \]

F-score: The F-score, proposed in [6] as a comprehensive scoring metric for single-view reconstruction, combines precision and recall to quantify the overall reconstruction quality. Concretely, the F-score at a distance threshold \(d\) is given by

\[F(d) = \frac{2 \cdot P(d) \cdot R(d)}{P(d) + R(d)}, \]

where \(P(\cdot)\) and \(R(\cdot)\) represents the precision and recall, respectively. Precision quantifies the accuracy while recall
assesses the completeness of the reconstruction. For the
ground-truth \(y_{gt} \) and reconstructed point cloud \(y_{pred} \), the
precision of an outcome at \(d \) can be calculated as

\[
P(d) = \sum_{i \in y_{pred}} \min_{j \in y_{gt}} ||i - j|| < d.
\]
Similarly, the recall for a given \(d \) may be computed as

\[
R(d) = \sum_{j \in y_{gt}} \min_{i \in y_{pred}} ||j - i|| < d.
\]

To evaluate the reconstructions between LIST and the base-
lines we used \(d = 1\% \).

2. Data Preparation

To prepare the ground truth, first the target shape was
normalized into a unit cube and 50k points were sampled
from the surface of the object. The query points were pre-
pared by adding random Gaussian noise \(n \) to the surface
points. Specifically,

\[
Q_j = Q_S + n \mid n \in \mathcal{N}(0, P), \tag{3}
\]

where \(Q_S \) are the sampled points and \(P \in \mathbb{R}^{3 \times 3} \) is a diago-
nal covariance matrix with entries \(P_{i,i} = \rho \). We empirically
found that 45% of the points at \(\rho = 0.003 \), 44% of the points
at \(\rho = 0.01 \), and 10% of the points at \(\rho = 0.07 \) achieved the
best results.

3. Implementation, Training, and Inference Details

3.1. Implementation Overview

LIST was implemented using the PyTorch [4] library. To
optimize the model, the Adam [3] optimizer was used with
coefficients (0.9, 0.99), learning rate \(10^{-4} \), and weight de-
cay \(10^{-5} \). A pretrained ResNet [2] was employed as the
image encoder in \(\Omega \) and \(\Pi \). We closely followed the generator in [5] to implement the coarse predictor in \(\Omega \) with tree-
structured convolutions. However, we empirically found that the degree values \((2, 2, 2, 2, 2, 2, 64)\) provided a better
coarse estimation in our settings. We set the coarse point
cloud density to \(N = 4000 \), and the occupancy grid reso-
lution to \(M = 128 \). To generate a probabilistic occupancy
with the same grid, we utilized a shallow convolutional net-
work \(\Gamma \).

We define \(\Xi \) as a convolutional neural network to map
the probabilistic occupancy grid into a high-dimensional la-
tent space. To extract the global query features and localize
the query points, we used a fully-connected neural network
\(\Theta \). The global image features are fused with the global
query features on the 3rd layer of \(\Theta \). During training, we
augment the images with random color jitter, and normalize
the values to [0, 1]. To improve the estimation accuracy, we
scale the ground-truth and predicted SDF values by 10.0.
Following [1], we disentangled the query points by scaling
with 2.0 and swapping the 1st and 3rd axis to extract query
features from the coarse prediction. At test time, we extract
the query points from a grid in the range \([-0.5, 0.5] \) with
resolution 128^3.

4. Training and Inference Time

To train LIST it takes \(\approx 1 \) s to make a forward pass
on an Intel i7 machine with an NVIDIA GeForce GTX
1080Ti GPU. To fully pass through the Pix3D and ShapeNet
datasets, it takes approximately 35 and 50 min, respectively.
Our training process involved using 4 1080Ti GPUs for 100
epochs with a batch size of 8. To reconstruct the mesh of a
single object from a corresponding RGB image, it takes \(\approx
7 \) s on average at a grid resolution of 128^3.
Fig. 3: A qualitative comparison between LIST and the baseline models using the ShapeNet dataset. Our model recovers significantly better topological and geometric structure, and the reconstruction is not tainted by the input-view direction. GT denotes the ground-truth objects.
Fig. 4: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows represent the reconstructions.
Fig. 5: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows represent the reconstructions.
Fig. 6: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows represent the reconstructions.
References

