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This document includes supplementary material for the
paper LIST: Learning Implicitly from Spatial Trans-
formers for Single-View 3D Reconstruction. In Fig. 1,
we show a qualitative comparison of occluded surface re-
construction. Examples of failed reconstructions are dis-
played in Fig. 2. More qualitative comparisons between
LIST and the baseline models using the ShapeNet dataset
are highlighted in Fig. 3. The results of LIST reconstruc-
tions using distinct views of the same object are provided
in Fig. 4, Fig. 5, and Fig. 6. Finally, a video presents 360-
degree views of the reconstructions.
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Fig. 1: A qualitative comparison between LIST and the baseline
models on occluded surface reconstruction using the ShapeNet
dataset. GT denotes the ground-truth objects.

Fig. 2: Examples of failed LIST reconstructions.

1. Evaluation Metrics
Chamfer Distance (CD): The chamfer distance (CD)

between two meshes is defined as

CD(yGT, ypred) =
∑

a∈ypred

min
b∈ygt

||a− b||+
∑
b∈ygt

min
b∈ypred

||b− a||,

(1)
where, yGT and ypred are two point clouds extracted from
the surface of the ground-truth and reconstructed object, re-
spectively.

Intersection over Union (IoU): The volumetric inter-
section over union (IoU) is defined as the quotient of the
volume of the intersection of two meshes and the volume of
their union,

IoU(Mpred,MGT) =
|Mpred ∩MGT|
|Mpred ∪MGT|

. (2)

F-score: The F-score, proposed in [6] as a comprehen-
sive scoring metric for single-view reconstruction, com-
bines precision and recall to quantify the overall reconstruc-
tion quality. Concretely, the F-score at a distance threshold
d is given by

F (d) =
2 · P (d) ·R(d)

P (d) +R(d)
,

where P (·) and R(·) represents the precision and recall, re-
spectively. Precision quantifies the accuracy while recall



assesses the completeness of the reconstruction. For the
ground-truth ygt and reconstructed point cloud ypred, the
precision of an outcome at d can be calculated as

P (d) =
∑

i∈ypred

[ min
j∈yGT

||i− j|| < d].

Similarly, the recall for a given d may be computed as

R(d) =
∑
j∈yGT

[ min
i∈ypred

||j − i|| < d].

To evaluate the reconstructions between LIST and the base-
lines we used d = 1%.

2. Data Preparation
To prepare the ground truth, first the target shape was

normalized into a unit cube and 50k points were sampled
from the surface of the object. The query points were pre-
pared by adding random Gaussian noise (n) to the surface
points. Specifically,

Qj = QS + n | n ∈ N (0, P ), (3)

where QS are the sampled points and P ∈ R3×3 is a diago-
nal covariance matrix with entries Pi,i = ρ. We empirically
found that 45% of the points at ρ = 0.003, 44% of the points
at ρ = 0.01, and 10% of the points at ρ = 0.07 achieved the
best results.

3. Implementation, Training, and Inference
Details

3.1. Implementation Overview

LIST was implemented using the PyTorch [4] library. To
optimize the model, the Adam [3] optimizer was used with
coefficients (0.9, 0.99), learning rate 10−4, and weight de-
cay 10−5. A pretrained ResNet [2] was employed as the
image encoder in Ω and Π. We closely followed the gener-
ator in [5] to implement the coarse predictor in Ω with tree-
structured convolutions. However, we empirically found
that the degree values (2, 2, 2, 2, 2, 2, 64) provided a better
coarse estimation in our settings. We set the coarse point
cloud density to N = 4000, and the occupancy grid reso-
lution to M = 128. To generate a probabilistic occupancy
with the same grid, we utilized a shallow convolutional net-
work Γ.

We define Ξ as a convolutional neural network to map
the probabilistic occupancy grid into a high-dimensional la-
tent space. To extract the global query features and localize
the query points, we used a fully-connected neural network
Θ. The global image features are fused with the global
query features on the 3rd layer of Θ. During training, we

augment the images with random color jitter, and normalize
the values to [0, 1]. To improve the estimation accuracy, we
scale the ground-truth and predicted SDF values by 10.0.
Following [1], we disentangled the query points by scaling
with 2.0 and swapping the 1st and 3rd axis to extract query
features from the coarse prediction. At test time, we extract
the query points from a grid in the range [−0.5, 0.5] with
resolution 1283.

4. Training and Inference Time
To train LIST it takes ≈ 1 s to make a forward pass

on an Intel i7 machine with an NVIDIA GeForce GTX
1080Ti GPU. To fully pass through the Pix3D and ShapeNet
datasets, it takes approximately 35 and 50 min, respectively.
Our training process involved using 4 1080Ti GPUs for 100
epochs with a batch size of 8. To reconstruct the mesh of a
single object from a corresponding RGB image, it takes ≈
7 s on average at a grid resolution of 1283.
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Fig. 3: A qualitative comparison between LIST and the baseline models using the ShapeNet dataset. Our model recovers significantly
better topological and geometric structure, and the reconstruction is not tainted by the input-view direction. GT denotes the ground-truth
objects.



Fig. 4: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows
represent the reconstructions.



Fig. 5: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows
represent the reconstructions.



Fig. 6: Qualitative results of LIST reconstructions using distinct views of the same object. Odd rows represent the input and even rows
represent the reconstructions.
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