
µSplit: image decomposition for fluorescence microscopy
SUPPLEMENT

Ashesh1, Alexander Krull2, Moises Di Sante3, Francesco Silvio Pasqualini3, Florian Jug1,*

1Human Technopole, Italy, 2University of Birmingham, UK, 3University of Pavia, Italy
ashesh.ashesh@fht.org, a.f.f.krull@bham.ac.uk, moises.disante@unipv.it

francesco.pasqualini@unipv.it, florian.jug@fht.org

S.1. The Architecture of Lean-LC
In this section, we describe the Lean-LC architecture, our

most GPU memory efficient LC variation (see Supplemen-
tary Figure S.1). In this architecture, lateral contextualiza-
tion is only used along the bottom-up branch. The top-down
branch therefore reduces to a regular HVAE, in our case just
as the one used in [2]. To make the laterally contextualized
bottom-up branch funnel into the regular (vanilla) HVAE
top-down branch, the output of each BottomUp block feed-
ing into the corresponding TopDown block is appropriately
centercropped. Hence, the latent tensors in the top-down
branch are smaller, leading to the reduced memory foot-
print.

S.2. Padding used in Tiling
S.2.1. Issue with Outer Padding

Here we introduce two terminologies needed to explain
the issue with Outer Padding. Assuming an infinitely large
input or intermediate tensor, we define its theoretical recep-
tive field to be the subset of tensor entries which can influ-
ence a single output pixel (see Figure 3 of the paper). Given
a finite tensor size, governed by a fixed input patch size (e.g.
64× 64) we define the effective receptive field analogously
as the subset of tensor entries which can influence a single
output pixel. Note that the theoretical receptive field is ei-
ther identical to the effective receptive field or larger (see
Figure 3).

As we use a deep network and work with 64 × 64 sized
input patches during training, the theoretical receptive field
(with grows up to about 500×500) is much larger than the
effective receptive field (which cannot grow beyond 64 ×
64). Given that the network has the capacity to see a large
region but a much smaller patch is fed as input, a natural
question to ask is: what does the network ‘see’ beyond the
input, i.e., its effective receptive field? The answer is that it
sees zeros due to zero padding present in same-convolution

*Corresponding Author.

operations of PyTorch. Hence, the network is accustomed
to see lot of zeros during training.

At evaluation time, if we use Outer Padding, we increase
the patch size, and therefore the effective receptive field.
Now, suddenly, the network sees a lot fewer zeros and it
is therefore not surprising that the quality of predictions de-
grades when so much more input is fed through the network.
In such cases, the network will effectively start operating
out of distribution (OOD) with respect to the training data
that was consistently fed at the same patch size of 64× 64.

Importantly, when using Inner Padding, we do not
change the patch size during tiled predictions and are there-
fore avoiding to operate the trained network OOD.

S.2.2. Qualitative Results for Inner Padding

In Supplementary Figure S.3, we compare results ob-
tained with Inner Padding, Outer Padding, and without
padding. For this we evaluated on random patches of size
400×400 from the Actin vs Nucleus dataset. One can easily
spot square-shaped artefacts when no padding is used. With
Inner Padding, they are generally much improved. Outer
Padding also leads to a reduction of these artefacts, but gen-
erate other artefacts leading to degraded performance in the
splitting task at hand.

On the full dataset, PSNR drops from 31.4 dB PSNR
without padding to 30.2 dB with Outer Padding. Using In-
ner Padding, on the other hand, improves the obtained re-
sults to a PSNR of 31.8 dB (+0.4 dB).

S.2.3. Deep-LC makes padding less important

We compare results obtained with a vanilla HVAE, our
architecture using Lean-LC, and our variant using Deep-LC.
In Table S.1, we report the PSNR we achieve on four
datasets with all of the architectures, once using no padding
during prediction, the other time using Inner Padding of
24 pixels. On average, the performance when using Inner
Padding improved by 0.33 dB PSNR for the vanilla HVAE,
0.18 dB when using Lean-LC, and 0.02 dB when using
Deep-LC. This supports our claim that Deep-LC brings



Dataset Vanilla Lean-LC Deep-LC
P0 P24 P0 P24 P0 P24

Act vs Nuc 31.4 31.8 33.7 33.8 33.9 33.9
Act vs Mito 31.4 31.9 32.4 32.7 34.3 34.4
Act vs Tub 25.0 25.2 27.5 27.7 28.6 28.6
Tub vs Nuc 29.4 29.6 31.8 31.9 32.5 32.5

Table S.1. LC can offset the importance of padding. The table
shows results by a vanilla HVAE and our µSplit with Lean-LC
and Deep-LC. For each model, we show the achieved PSNR with-
out padding (P0) and when Inner Padding of 24 pixels (P24) was
used during prediction. One can observe that the difference be-
tween the two columns for each architecture becomes increasingly
smaller, suggesting that LC helps to avoid artefacts typically ad-
dressed with padding during tiled predictions.

enough lateral context that padding becomes generally less
important.

S.3. The PaviaATN Data

The PaviaATN dataset comprises static lambda-stacks
from a human keratinocytes cell line (HaCaT) expressing
GFP-tubulin, RFP-LifeAct, and a customized version of the
cell cycle indicator FastFUCCI that uses various combina-
tions of a yellow fluorescent protein (YPF, mTurquoise2)
and a far-red fluorescent protein (iRFP, miRFP670) to in-
dicate multiple phases of the cell cycle. While the de-
tails of how this cell line was genetically engineered will
be published separately, here we used it to create a chal-
lenging dataset for µSplit which we planning publish with
this manuscript. In fact, when a cell is in the G1 phase,
increasing intensities of YFP fluorescence are detected in
the nucleus. As a cell moves from G1 to S phase (G1/S),
both YFP and iRFP fluorescence are detected in the nucleus
of the cell. Finally, the sole iRFP fluorescence is detected
in the nucleus during the S-G2-M phase. At the onset of
the G1 phase, the nucleus shows no visible fluorescence in-
tensity. All Images are acquired through the 100x silicon
oil objective of a Nikon Ti2 microscope (100x silicon oil
objective) equipped with an Okolab environmental control
chamber and a Crest V3 spinning disk confocal in widefield
mode. Excitation light was provided by a Lumencor Ce-
lesta laser engine set up to provide 5% laser power to the
446, 477, 546, and 637 nm lines. Emission light was col-
lected through the following filters Semrock FF01-511/20,
595/31, 685/40. This configuration can spectrally separate
the signals from actin (RFP) and S-G2-M cell cycle phases
(iRFP). Instead, GFP and YFP exhibit a degree of overlap in
excitation (446 and 477) and emissions (through the Sem-
rock 595/31 filter), which we seek to resolve with µSplit.
Since all combinations of YFP and GFP variants have spec-
tral overlap, we expect the µSplit results to be very relevant
for the field.

S.4. Metrics
We use PSNR and SSIM (structural similarity) to quanti-

tatively measure the quality of predictions. When reporting
PSNR, we use the commonly used shift invariant variation
introduced in [3]. We compute both SSIM and PSNR met-
rics on normalized data.

S.5. More Quantitative Results
Figure S.2 shows the achievable results of a U-Net, a

vanilla HVAE, and our µSplit variations for the PaviaATN
Actin vs Nucleus data. Plots are as the ones in the main
figure. One can observe the outperformance of LC variants
with respect to the Vanilla baseline. On this task we ob-
serve that the Deep-LC architecture does not lead to addi-
tional improvements over the other LC variations. This can
be explained by the nucleus channel being relatively easy
to separate from the actin channel, without requiring much
lateral image context to perform the task well.

S.6. More Qualitative Results
All qualitative results in Supplementary Fig-

ures S.4, S.5, S.6 and S.7 are showing predictions on
randomly chosen patches of size 300× 300.

All qualitative results figures show randomly chosen
patches in two rows, each one showing one of the super-
imposed image channels. The superimposed input region is
shown in the first column and the last column shows ground
truth. All other columns show predictions from various
model configurations.

Supplementary Figures S.4, S.5, S.6 and S.7 all show
results for HVAE variations, i.e. comparing the vanilla ar-
chitecture, with the ones utilizing Lean-LC, and Deep-LC.

In Supplementary Figure S.8, we show performance on
random inputs of our SinosoidalCritters data.

S.6.1. Comparison with Double-DIP

In Supplementary Figure S.9, we qualitatively compare
µSplit’s performance with Double-DIP’s performance. We
note that Double-DIP, being a completely unsupervised ap-
proach, naturally finds it difficult to know the ’correct’ split,
the split which exists in nature. It simply returns one of the
many plausible splitting options. Its inferior performance
argues for some form of supervision for our problem.

S.7. Different Neural Network Submodules
Residual Block We’ve taken the residual block formula-
tion from [2]. The schema for the residual block is shown in
Supplementary Figure S.1 (b). The last layer in the resid-
ual block is the GatedLayer2D which doubles the number
of channels through a convolutional layer, then use half the
channels as gate for the other half.



BU Blocks PSNR
1 29.8
2 31.3
4 33.2
5 33.2
6 33.0

Table S.2. The achievable performance using a U-Net using vari-
ous numbers of bottom-up (BU) blocks. For the results reported
in the main text, 5 BU blocks have been used.

Stochastic Block The channels of the input of this block
are divided into two equal groups. The first half is used as
the mean for the Gaussian distribution of the latent space.
The second half is used to get the variance of this distri-
bution, implemented via the σExpLin reformulation intro-
duced in [1].

S.8. U-Net Tuning
We varied the depth of the used U-Net. For consistency

with the other used architectures, we decided to still call
it BottomUp (BU) blocks (HAES and HVAES grow up-
wards, not downwards.) Table S.2 shows the achievable
performance with U-Nets of different depth (number of BU
blocks).

Other relevant hyperparameter values used for U-Nets
are patience = 200 for early stopping , patience = 30 for
the learning rate scheduler (ReduceLROnPlateau).

References
[1] David Dehaene and Rémy Brossard. Re-parameterizing VAEs

for stability. June 2021. S.3
[2] Mangal Prakash, Alexander Krull, and Florian Jug. DivNois-

ing: Diversity denoising with fully convolutional variational
autoencoders. ICLR 2020, June 2020. S.1, S.2, S.4

[3] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
M uuml ller, Alexander Dibrov, Akanksha Jain, Benjamin
Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân Cul-
ley, Maurı́cio Rocha-Martins, Fabián Segovia-Miranda, Caren
Norden, Ricardo Henriques, Marino Zerial, Michele Soli-
mena, Jochen Rink, Pavel Tomancak, Loı̈c Royer, Florian
Jug, and Eugene W Myers. Content-aware image restoration:
pushing the limits of fluorescence microscopy. Nature Pub-
lishing Group, 15(12):1090–1097, Dec. 2018. S.2



[2]

[2]

[2]

[2]

(a)

(b)

Figure S.1. Lean-LC and Residual block architecture. (a) The network architecture of Lean-LC variant is shown here. The Bottom-Up
block remains unchanged from the architecture of LC and it is Top-Down block which has changed. If we look at kth Bottom-Up block
(from bottom), then as before, the output from the kth Bottom-Up block is passed to the next Bottom-Up block and also to the Top-Down
block to the same level. However, before feeding to the Top-Down block, the output is center-cropped to (1/2k)th size. The Top-Down
block of LC-Lean is identical to the Top-Down block of /citePrakash2020-wr. Input to the block passes through Residual blocks and then
through the stochastic block. The output of the Stochastic block is upsampled to twice its size through Transposed convolution with stride
of 2. (b) The schema for the Residual Block. This is directly taken from [2].

(a) (b)

Figure S.2. Benefits of µSplit in one glance: Quantitative results of baselines vs. µSplit variants on our PaviaATN Act vs. Nuc task. In
Figure 6 of the paper, we do the identical analysis on our PaviaATN Act vs. Tub task. (a) We plot the performance of the vanilla U-NET and
the vanilla HVAE baseline trained on increasingly larger patch sizes. The U-NET performance plateaus roughly at a patch size of about
256. The performance of the vanilla HVAE (not using LC) depends on how many hierarchy layers we use (1 to 4, different colored plots),
but then plateaus as well, or requiring a tremendous amount of GPU memory (black plot, also see Table 1. (b) The left plot displays the
data as shown in the HVAE plot in (a), but now as a function of hierarchy levels in the used architecture. Each curve is now representing
a given patch size. X-axis ticks express how many hierarchy levels the HVAE has, and how many of those make use of LC (number in
brackets). The rightmost two plots show results obtained with µSplit using an HVAE with a patch size of only 64. Each plot shows results
results obtained with one of our LC variations being used. Not only do networks using LC outperform all baselines, they do so already
when using the smallest patch size (64), thereby requiring only a moderate amount of GPU memory (see Table 1). Note that here, Deep-LC
has lesser advantage as was the case with Act vs Tub data.



Input Image No-padding Outer-padding Inner-padding GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.3. Comparing No Padding, Inner Padding and Outer Padding on the Actin vs Nucleus task. Here, we disentangle the region
present inside the red square (column one) using Vanilla HVAE model. One can see square shaped artefacts arising during tiling of
predictions in ’No Padding’ case, a case where no padding is used during the tiling operation. But more importantly, use of ’Outer
Padding’ leads to quite inferior splitting results where pixel intensity which was supposed to be present in the nuclues region ’leaks’ into
the actin channel (unexpected bright region in actin channel’s prediction). This naturally degrades the splitting results of both channels.
Inner tiling, on the other hand yields most consistent splitting results with respect to the ground truth (last column).



Input Image Vanilla Lean-LC Deep-LC GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.4. Qualitative evaluation of Vanilla HVAE and our LC variants (also integrated to HVAE architecture) on Actin vs Mitochondria
task. Here, we show results on three random crops of size 300× 300. Input to all models is the region inside red square, as seen in column
one. Last column has the ground truth for both channels. Red arrows highlight few interesting areas where we observe our Deep-LC
performs better than others.



Input Image Vanilla Lean-LC Deep-LC GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.5. Qualitative evaluation of Vanilla HVAE and our LC variants (also integrated to HVAE architecture) on Actin vs Tubulin task.
Here, we show results on three random crops of size 300 × 300. We disentangle the region inside red square, which is shown in column
one. Last column has the ground truth for both channels.



Input Image Vanilla Lean-LC Deep-LC GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.6. Qualitative evaluation of Vanilla HVAE and our LC variants (also integrated to HVAE architecture) on Tubulin vs Nucleus
task. Here, we show results on three random crops of size 300 × 300. We disentangle the region inside red square, which is shown in
column one. Last column has the ground truth for both channels.



Input Image Vanilla Lean-LC Deep-LC GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.7. Qualitative evaluation of Vanilla HVAE and our LC variants (also integrated to HVAE architecture) on Actin vs Nucleus task.
Here, we show results on three random crops of size 300 × 300. We disentangle the region inside red square, which is shown in column
one. Last column has the ground truth for both channels.



Input Image Vanilla Lean-LC Deep-LC GT

Ch1

Ch2

Ch1

Ch2

Ch1

Ch2

Figure S.8. Qualitative evaluation of Vanilla HVAE and our LC variants (also integrated to HVAE architecture) on SinosoidalCritters
dataset. Here, we show results on three random crops of size 200 × 200. We disentangle the region inside red square, which is shown
in column one. Last column has the ground truth for both channels. Red arrows highlight few interesting areas where we observe our
Deep-LC performs better than others.



PSNR:32.8 (28.5) PSNR:23.7 (25.7) PSNR:23.5 (24.9)

PSNR:49.7 (36.1) PSNR:32.8 (30.0) PSNR:30.5 (31.8)

Figure S.9. Qualitative image decomposition results using the
Double-DIP baseline (row 2) on an 256 × 256 image crop
from Hagen et al. dataset. The overlaid histograms shows ei-
ther the intensity distribution of the two channels (column 1) or
the intensity distribution of the ground truth and the prediction
(red). Regular-LC, on the other hand, performs well. Note that
Double-DIP is solving a much harder task since it is an unsuper-
vised method trained on a single input images.


