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Abstract

In this supplementary, we present the details of imple-
mentation (Section 1) and training (Section 2), perform a
complexity analysis of our method compared to other meth-
ods (Section 3), provide an additional ablation study on the
model components (Section 4), identify failure cases of our
method (Section 5), and finally visualize additional qual-
itative results (Section 6). We also visualize the result of
multiple attention heads in Section 6 specializing in differ-
ent areas and agents in the scene, which might help future
work on interpretability.

1. Implementation Details

Scene Representation: We follow VectorNet [2] in our
polyline subgraph implementation to obtain the updated
node features vi of the subgraph as follows:

v
(l+1)
i = cat

(
MLPl(v

(l)
i ), pool(MLPl(v

(l)))
)

where v
(l)
i denotes the feature vector of agent i at layer l,

pool the max-pool operation, and cat the concatenation op-
eration. We use an MLP with 2 linear layers and ReLU for
non-linearity with a layer normalization [1] after the first
layer. We set the layer number l to 3 and the size of the fea-
ture vector to 128 for both the agent and the lane subgraph.

Interaction Modelling: For each multi-head attention
block (MHAB), we set the number of attention heads to 8
and apply a dropout rate of 0.1 to the attention probabili-
ties. We set the size of the hidden layer in the feed-forward
networks to 128 and the number of iterations L to 3.

Meta Info: Meta info includes the location of the agent
at time t, t − 1, and the yaw angle at t. Locations are in
2D coordinates and the angle is in radians, resulting in a
5-dimensional vector. We concatenate the meta info to the
corresponding agent feature before decoding.

Trajectory Predictor: For both dynamic and static heads,
we use a 2-layer MLP with ReLU for the non-linearity and a
layer normalization [1] after the first layer. Differently from
subgraphs, we use residual connections in the last layer.

2. Training Details
As mentioned in the paper, we use the variety loss to

capture multi-modal futures by calculating the loss only for
the most accurate trajectory over K predicted ones. Given
the ground truth trajectory {st}Tt=1 and the predicted trajec-
tory with the closest endpoint {ŝt}Tt=1 for T future steps,
we train our model using the endpoint loss Lend, the full
trajectory loss Ltraj , and the trajectory classification loss
Lcls. Lend is the difference between the closest endpoint
and the ground truth endpoint:

Lend = LSmooth-ℓ1(ŝT , sT ) (1)

where ŝT is the endpoint of ŝ, i.e. the prediction at time
T . Ltraj is the mean of the per-step difference between the
predicted full trajectory, ŝ, and the ground truth trajectory,
s:

Ltraj =
1

T

T∑
t=1

LSmooth-ℓ1(ŝt, st) (2)

Finally, Lcls is the Binary Cross Entropy Loss applied to the
assigned probabilities p of K trajectories where the ground
truth probability of the closest trajectory ŝ is set to 1 and the
others to 0:

Lcls = LBCE(p, y) (3)

where y denotes the ground truth probabilities assigned.
Overall, our loss is the sum of these three losses:

L = Lend + Ltraj + Lcls (4)

3. Computational Complexity
In this section, we provide a comparison of the computa-

tional complexity according to the attention operations used
in the existing approaches. We first define variables that de-
fine the number of elements. N , M , and T correspond to
the number of agents, lane elements, and time steps, respec-
tively. T can be decomposed into two variables, Tp and Tf ,
which refer to past and future time steps, respectively. In
general, the number of agents dominates the computation,
then, the number of lanes followed by the fixed number of
time steps, e.g. T = 50 (N > M > T ). While the number



(a) Sequential Order (b) Iterative Order

Figure 1: The Order of Attention in Interaction. Given a
number of layers L, there are two ways of applying attention
to model interactions: sequential and iterative. In sequen-
tial order a, each type of interaction is considered L times
sequentially. In iterative order b, each type of interaction is
considered once in a single pass and the pass is repeated L
times.

of lanes M stays mostly uniform across scenes, the num-
ber of agents N might vary significantly even for the same
scene.

As addressed in the SceneTransformer [6], directly ap-
plying attention to both time and agent axes results in high
overhead, with the computational complexity of O((NT +
M)2) where N is the number of agents, M is the number
of lane segments and T is the number of time steps includ-
ing both past and future. SceneTransformer reduces it to
O(NT 2 + N2T + NTM) with factorized attention over
time and agent axes.

Autobot [3] does not include lane elements in their fac-
torized attention steps. Contrary to SceneTransformer, their
encoding and decoding phases consider only past and fu-
ture time steps, respectively, resulting in the complexity of
O(NTp

2 +N2Tp +NTf
2 +N2Tf ) where Tp denotes the

number of past time steps and Tf denotes the number of
future time steps.

HiVT [9] does not use the standard multi-axis factorized
attention but embraces a more efficient type of temporal in-
teraction by considering only one agent for each time step
and attending to only one feature over different time steps.
Since HiVT follows an agent-centric approach and calcu-
lates agent features independently from each other, consid-
ering only one agent in their local scene does not result
in information loss. However, the agent-centric approach
comes with the overhead of N runs of the same procedure.
Considering scene normalization for each agent and global
interaction in the end, HiVT has the overall complexity of
O(N2Tp +NTp

2 +NM).

ADAPT has a clear advantage in terms of computational
complexity over the existing approaches. Our computation
is not bounded by T as our subgraphs in vectorized encoder
handle the temporal reasoning. Since we calculate the atten-
tion over only agents and lanes, ADAPT has the complexity
of O(N2 +NM +M2) resulting from the attention opera-
tions in the interaction modeling. Removing the number of
time steps T out of the equation is the main reason behind
the efficiency gain of ADAPT.

4. Quantitative Results

In this section, we present an additional ablation study
to justify some minor design choices. Specifically, we in-
vestigated the effect of iterative vs. sequential order in in-
teraction (Fig. 1) and the effect of using two separate sub-
graphs for encoding agents and lanes. The results in Table 1
show that the iterative attention blocks outperform their se-
quential counterpart. This implies that updating interme-
diate features at each iteration, as opposed to the attention
order used in LaneGCN [5], leads to a better understanding
of the relationship between agents and lanes. Furthermore,
the use of separate polyline subgraphs for lanes and agents,
which is in contrast to prior work [4, 2], produces better
results. Overall, our decision choices on the architecture
improve performance with better feature encoding.

5. Failure Cases

In this section, we provide some failure cases and in-
vestigate possible reasons. We perform the analysis on
single-agent predictions on Argoverse, since the miss rate in
single-agent prediction is relatively higher than multi-agent
predictions on Interaction. We identify three sources of er-
ror for failure cases: erroneous data, missing rare behaviors,
and inaccurate predictions.

Erroneous Data: The accuracy of the provided input
trajectories in the past directly affects the future predic-
tions, since the future predictions are trained to be consis-
tent with the past ones. Thus, defective or unstable history
data causes incorrect future predictions as shown in Fig. 2a.

mADE6 mFDE6 MR6

w/o Iterative Att. 0.673 0.971 0.086
w/o Dual Subgraph 0.671 0.960 0.086
ADAPT 0.668 0.948 0.083

Table 1: Single-Agent Ablation Study on Argoverse
(Val.). This table shows the effect of iterative attention and
dual subgraph on the performance of single-agent predic-
tion on the Argoverse validation set.



Moreover, defects in the future steps result in inaccurate
evaluations of the predictions (Fig. 2b). Some problems
such as id-switch and position-oscillation, resulting in un-
stable and incorrect ground truth future locations, are ad-
dressed in previous works as well [8, 7].

Additionally, accurate map information plays an impor-
tant role in future predictions because it directly affects the
reasoning of the model about drivable areas. In the exam-
ple shown in Fig. 2c, predictions are intensified on a sin-
gle mode i.e. left turn, because of the missing lane that the
ground truth trajectory follows.

Missing a Peculiar Mode: Despite the large number of
scenarios on Argoverse, some behaviors are less frequently
observed such as a u-turn or an abrupt lane change. These
behaviors that are rare on the training set cause the model
to miss the relevant mode at test time as shown in Fig. 2d.

Precision of Predictions: Some predictions result in an
error due to a lack of precision in the predicted trajecto-
ries despite correctly identifying intention. For example,
in Fig. 2e, all possible paths are covered by the predic-
tions but the difference between the closest endpoint and the
ground truth endpoint is higher than the miss rate threshold.

6. Qualitative Results
In this section, we provide additional qualitative results

for both single-agent (Fig. 3) and multi-agent (Fig. 4) pre-
dictions of ADAPT on Argoverse and Interaction validation
sets, respectively.

Focus of Attention Heads: In Fig. 5, we visualize atten-
tion scores from different MHAB heads that are used to up-
date an agent (red) in scenes from the validation split of the
Interaction dataset. The attention scores are gathered from
AA and LA modules for agents and lanes, respectively. In
the first layer of interaction (the first row), attention heads
do not focus on any specific scene elements yet as this is the
first step where the agent is informed by the scene. As the
agent has no prior information, attending to all scene ele-
ments without focusing on any is a reasonable choice in the
first layer. On the other hand, in the next layer, each atten-
tion head specializes in some part of the map. For example,
in the scene given in the upper set of rows, head 2 attends
to lanes in the upper left of the map whereas head 4 attends
to the upper right lanes. Some AA heads attend only to the
agent itself and do not consider any other agents, e.g. head
3 and head 4. In the last layer, heads still attend to some
specific parts of the map and a subset of the agents. These
visualizations confirm that different types of interactions are
captured with the multi-head attention blocks of our model.
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(a) Erroneous Input Trajectories. The errors in the given tra-
jectories, both past, and future, result in unreasonable futures due
to inconsistent and uninformative past locations.

(b) Erroneous Ground Truth. Erroneous (impossible) ground
truth evaluates admissible trajectories as failures.

(c) Problems in the Input Map. The missing lane information
on the map causes the model to miss a possible future path.

(d) Missing a Mode. Rare behaviors cause the model to miss the
mode corresponding to the ground truth.

(e) Inaccurate Predictions. The difference between the pre-
dicted and the ground truth endpoints is higher than the miss rate
threshold, therefore this case is classified as a failure although
ground truth intention is correctly captured by the predictions.

Figure 2: Failure Cases on Argoverse. We present some failure cases with their potential reasons.



Figure 3: Additional Qualitative Results for Single-Agent Predictions on Argoverse. The red colored trajectory shows
the ground truth future, the cyan shows the past trajectory of the agent of interest, and the green trajectories are the multiple
predictions. Context agents are displayed in black. ADAPT can successfully predict a trajectory similar to the ground truth
by also covering possible diverse trajectories for agent of interest.



Figure 4: Additional Qualitative Results for Multi-Agent Predictions on Interaction. The red colored trajectories show
the ground truth future for each agent, the cyan shows the past trajectories of the agents, and the green trajectories are the
predictions. ADAPT can successfully predict futures for each agent in a single forward pass without introducing additional
overhead.
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Figure 5: Visualization of Attention Scores on the Interaction. We visualize multi-head attention from different layers for
a selected agent (red). The attention probabilities for the agents (blue) and lanes (green) are the results of the Agent-Agent
and the Lane-Agent modules, respectively. The transparency increases with lower attention probabilities. As the attention
propagates towards higher layers, the attention heads specialize towards specific components such as lanes in the right turn,
the vehicle in front, etc.


