Supplement: Markov Game Video Augmentation for Action Segmentation

Nicolas Aziere
Oregon State University

azieren@oregonstate.edu

1. Introduction

In the following, Sec. 2 depicts the algorithm used to
generate features from new transcripts. Sec. 3 details the
architecture of agent 2’s proposal module. Sec. 4 provide an
ablation study on the reward functions and Sec. ?? a study
on the amount of transitions introduced by new transcript.

2. Feature Generation from New Transcript

When a new transcript is generated using the Monte-
Carlo Tree Search, the next step is to find the associated
deep features representing it. In Algorithm. 1, we show the
pseudo-code describing the process of selecting the features
for a new transcript 7 from the dataset D. The features are
copy and paste from videos having a similar transcript to
m. We use the edit distance function to sort all videos in
terms of edit distance, then iteratively select matching seg-
ments between 7 and the transcript of the current video. The
segments with no current match are kept empty until being
match to a different video. We first generate the same num-
ber of new transcripts as there are ground-truth ones, with
zero intersection between them. Then, for our experiments,
we select a subset (maximum 20%) of the generated tran-
scripts that are closest in edit distance to the ground-truth
transcripts.

3. Segment Proposal network Architecture

We detail in this section the architecture of agent 2’s
head, responsible of selecting the frames to be augmented.
The head representing agent 2 is shown in Fig. 1. The state
is first fed to the backbone network common to both agents
1 and 2. The resulting latent state features are passed to a
single stage TCN turned into a proposal network inspired
from [1]. The output for each frame is composed of three
values: left offset, right offset and a score for each frame
¢tk To select intervals of interest and remove unwanted se-
lections, we apply the non-maximum suppression algorithm
filtering out overlapping and low-score segment proposals.
After the segment proposal selection, we can construct the
mask a? with 1’s where time indices fall in the segment
proposals and 0’s otherwise.
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Algorithm 1 Feature generation from new Transcripts
procedure FEATGEN(7, D) > Input: transcript, dataset
X +{a:{}fora=1.|x}
> Initialize hashmap of frame features
Y« {a:{}fora=1.r|} > Initialize labels
D + EditSort (m, D) > Sort the dataset by edit
distance with 7 from closer to further
for 7, X, Y « D do b Get transcript, features and
labels
A, A + Match(r, 7)
> Find set of corresponding indices of matching actions
for (a,a) < (A, A) do
if X|[a] is empty then
Xa] + X [a]
Y[a] < Y[a]
if X is completed then
return 7, X, Y
return Error
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Figure 1. Details of our segment proposal agent. First a latent rep-
resentation of state sj, is extracted by a backbone network. The
deep representation is then fed to the proposal head outputting 3
values per frame: Right offset, Left offset and segment score. The
NMS algorithm is applied to filter redundant and low score seg-
ment proposals. Finally the agent’s action represented by a? is
selected and represent the selection of frames to modify by the
other agent.



Rl R? F1@10,2550 | Edit | MoF
No Cond. - 86.1 | 827 | 724 [ 814 | 762
Cond. - 885 | 850 | 747 | 838 | 782
NoCond. | NoCond. | 86.6 | 83.8 | 744 | 80.7 | 77.5
NoCond. | Cond.1 | 86.1 | 843 | 748 | 81.5 | 77.4
NoCond. | Cond.2 | 87.3 | 839 | 75.0 | 83.0 | 77.2
No Cond. | Cond. 1&2 | 87.5 | 84.9 | 75.1 | 827 | 77.7
Cond. NoCond. | 88.8 | 874 | 77.0 | 86.7 | 79.1
Cond. Cond. 1 | 89.6 | 87.3 | 77.8 | 874 | 79.0
Cond. Cond.2 | 89.5 | 88.0 | 788 | 879 | 794
Cond. | Cond. 1&2 | 90.9 | 88.2 | 79.2 | 88.8 | 79.6

Table 1. MS-TCN performance on GTEA for different definition
of the reward functions: gradually, the reward function are added
new elements in the form of a conditional statement with the goal
of removing unwanted behaviors. First in the top 2 rows, only Rj.
is evaluated on the single-agent case. In the multi-agent setting we
show the boost in performance when including new constraints as
part of the reward R7.

4. Reward Ablation

In this section, we vary the definition of our rewards for
training the policy of agent 1 and 2. Since the definition of
the rewards is heuristic, we experimentally demonstrate that
our choices gives the best results. For R}, we have only 2
variants. The first, depicted below in Eq. 1, is translating
our main motivation which is enforcing frame prediction
ambiguity, but without the conditional statement enforcing
correct classification. The second version is the proposed
reward function referred to as Eq.(6) in the main paper.
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In the top 2 rows of Tab. 1, 'No Cond.” corresponds to
the reward function depicted in Eq. 1 and ’Cond.” to Eq.(6)
in the main paper. Results are improving when the condi-
tional statement is added to the reward function because we
avoid feature augmentation resulting in wrong classification
by the action segmentation model. We also have different
version of the reward function RZ. We show that adding
the conditional statements also increases the performances.
From Eq.(7) in the main paper, we define by ’Cond. 1’ the
first condition ), af ,m; k<, and by *Cond. 2’ the sec-
ond condition ||a?||<Z. The "No Cond.’ corresponds to a
reward function R} equals to only the positive part of Eq.(7)
with no conditional statement at all.

As reflected in Tab. 1, the performances are lower when
R}, does not punish wrong classification by the model with
a negative reward. It proves that this heuristic choice is de-
terminant for the performance of the feature augmentation
policy. Regarding R?, we observe that adding either the
first or second conditional statement by themselves leads to
similar performances. Combining both conditions leads to
a boost in performance. The best results are achieved when

Method F1@10,25,50 Edit | MoF

Random 82.3 | 80.0 | 75.2 | 81.7 | 75.1
Constrained | 90.9 | 88.2 | 79.2 | 88.8 | 79.6
Table 2. MS-TCN performance on GTAE for the random and con-
strained methods of constructing new training videos from gener-
ated transcripts, for 1.2x for the number of transcripts and 2x for
the total number of videos in training

all conditional statement are present for both reward func-
tion.

5. Construction of new training videos

Tab. 2 shows MS-TCN performance on GTA for two al-
ternative methods of constructing new training videos from
generated transcripts. For each action class visited sequen-
tially along a given artificial transcript, the Random method
randomly selects an instance of that action class from a
real video, and copies all frames of the selected interval
into the new video at the appropriate temporal location.
MVGA uses the Constrained method to select the real video
whose ground-truth transcript has the smallest edit distance
to the new transcript, and copies all of the matched action
intervals from the selected video to the new video; any re-
maining action classes present in the artificial transcript are
constructed using the next closest video. Tab. 2 shows that
our Constrained method used in MVGA is better.
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