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In this appendix, we provide additional details which we
could not include in the main paper due to space constraints,
including additional results, details and analysis that pro-
vide more insights into the proposed method. In particular,
We discuss the following:
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A1. Comparison against OTCE

In this section, we compare OSBORN with the OTCE
metric. OTCE is limited by its ability to estimate transfer-
ability for a single source model; however, we naively add
the OTCE scores of the individual models present in the
ensemble to make it a multi-source variant. The results in
terms of various correlations are shown in Tab. A1. OS-
BORN outperforms OTCE by 131.76% in terms of WKT,
235.59% in terms of KT and 513.33% in terms of PCC.

Target Dataset Weighted Kendall’s τ Kendall’s τ Pearson
OTCE Ours OTCE Ours OTCE Ours

Oxford102Flowers 0.406 0.616 0.118 0.400 0.086 0.456
OxfordIIITPets 0.186 0.558 0.075 0.453 0.109 0.666
StanfordDogs 0.093 0.477 0.05 0.427 0.088 0.604

Caltech101 0.179 0.565 0.223 0.335 0.068 0.486
StanfordCars 0.300 0.486 0.123 0.368 0.100 0.549

Average 0.233 0.540 0.118 0.396 0.090 0.552

Table A1: OTCE vs OSBORN (Ours)

A2. Modified Baselines

In this section, we understand the effect of adding the
model cohesion term WC to our baselines i.e. MS-LEEP
and E-LEEP. Table A2 shows the results. While it ex-
pectedly improves correlations of these baselines (further
corroborating the usefulness of our proposed cohesive-
ness term), OSBORN still achieves higher correlations than
these modified baselines.

A3. Additional Experiments

In this section, we present the results of additional ex-
periments we conducted on tasks like multi-domain/domain
adaptation and semantic segmentation. We could not in-
clude details about these in the main paper due to space
constraints. We start by describing the datasets used, mod-
els trained and then report the performance of OSBORN
and other baselines on these tasks.
Multi-domain/Domain Adaptation Dataset: Domain-
Net. We use the DomainNet [A14] dataset to test OSBORN
in a challenging multi-domain source pool setting. Domain-
Net consists of 6 domains (styles) namely, Clipart (C), Info-
graph (I), Painting (P), Quickdraw (Q), Real (R) and Sketch
(S), each covering 345 common object categories. Out of
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Weighted Kendall’s τ Kendall’s τ PearsonTarget Dataset MS E WC + MS WC + E MS E WC + MS WC + E MS E WC + MS WC + E

Oxford102Flowers 0.086 -0.019 0.413 0.459 0.138 0.0739 0.315 0.330 0.23 0.164 0.401 0.385
OxfordIIITPets 0.414 0.393 0.540 0.522 0.346 0.326 0.473 0.475 0.504 0.5 0.666 0.676

Caltech101 0.435 0.409 0.314 0.385 0.240 0.231 0.242 0.236 0.353 0.341 0.315 0.354
StanfordDogs 0.326 -0.472 0.348 0.384 0.244 -0.236 0.269 0.326 0.398 -0.154 0.496 0.571
StanfordCars 0.115 0.018 0.066 0.147 0.137 0.071 0.144 0.185 0.256 0.163 0.360 0.434

Average 0.275 0.097 0.265 0.301 0.221 0.110 0.246 0.259 0.348 0.222 0.383 0.407

Table A2: Comparison of baselines and modified baselines. Note: MS: MS-LEEP, E: E-LEEP, WC : Model Cohesion term

Weighted Kendall’s τ Kendall’s τ PearsonTarget Domain MS E Ours MS E Ours MS E Ours

Real 0.057 0.026 0.576 0.016 -0.011 0.415 0.010 -0.033 0.518
Infograph 0.165 0.163 0.298 0.046 0.048 0.230 0.076 0.057 0.308

Clipart 0.003 -0.076 0.040 0.115 0.078 0.161 0.248 0.193 0.179

Average 0.075 0.038 0.305 0.059 0.038 0.269 0.111 0.072 0.335

Table A3: Comparison of different ensemble transferability estimation metrics for classification tasks on the DomainNet
dataset. Averaged across 3 domains, OSBORN achieves the best results under all the correlation values. MS: MS-LEEP, and
E: E-LEEP.

these 6 domains, we evaluate the performance of OSBORN
on 3 domains, that are Real (R), Infograph (I) and Clipart
(C).
Semantic Segmentation Datasets. For conducting ex-
periments on the semantic segmentation tasks, we choose
10 popularly used segmentation datasets, Pascal Context
[A12], Pascal VOC [A4], COCO [A11], CamVid [A2],
CityScapes [A3], India Driving Dataset (IDD) [A18],
Berkeley Deep Drive (BDD) [A19], Mapillary Vistas [A13],
SUIM [A9], and SUN RGB-D [A17]. Out of these 10
datasets, we evaluate and compare the performance of OS-
BORN with baselines on 3 target datasets, namely Camvid
[A2], CityScapes [A3], and SUIM [A9].
Model Architectures (DomainNet). For building the
source pool for the multi-domain experiments, we use the
same models as we used in the fully-supervised pre-training
setting i.e ResNet-101 [A6] and DenseNet-201 [A8]. Ini-
tially, both models are initialized with the fully-supervised
ImageNet weights [A10], and we then train them on 6 do-
mains of the DomainNet dataset.
Model Architectures (Semantic Segmentation). For
semantic segmentation, we employ a FCN [A16] with
ResNet-101 [A6] backbone, and a Lite R-ASPP with Mo-
bileNetv3 backbone [A7] as our source model architectures.
The capacity of the former is much higher than the latter
thus bringing in diversity. We initialize these models with
the COCO pre-trained weights [A11] and then train them
on the 10 datasets to include them in our source pool 1.The

1Our baselines MS-LEEP and E-LEEP use custom proprietary model
architectures that are not publicly available. We hence followed the au-
thors’ code and obtained guidelines from them in using their method on

rest of the experimental setup is the same as in Section 5 of
the main paper.
Results on DomainNet. We compare OSBORN with the
baseline metrics, i.e. MS-LEEP and E-LEEP, in terms of
WKT, KT, and PCC. The correlation values are reported in
Tab. A3, averaged across three target domains.
Results on Semantic Segmentation. Apart from MS-
LEEP and E-LEEP, the paper [A1] also proposes two addi-
tional metrics for predicting transferability on semantic seg-
mentation tasks, which are namely IoU-EEP and SoftIoU-
EEP. In this section, we compare the performance of OS-
BORN with these two metrics as well. We present the ex-
perimental results for the semantic segmentation tasks in
Tab. A4. As seen in the table, OSBORN improves transfer-
ability estimation when compared to previous works.

A4. Implementation Details
Here, we describe miscellaneous details pertaining to the

experiments reported in Section 5 of the main paper.

Optimal Transport Computation. We use the Python Op-
timal Transport Library (POT) to conduct our experiments.
To keep the computational cost in check, we use a strati-
fied representative set of 5000 samples from the train sets to
calculate the Wasserstein distance (since it involves extract-
ing the source and target latent). This makes our method
tractable and practical. We perform stratified sampling to
follow a class-balanced approach, i.e. we sample the im-
ages inversely proportional to their class frequencies in the

the models used in our work, and picked the best-performing hyperparam-
eters for the results corresponding to their baselines shown in this work.



Target Dataset Weighted Kendall’s τ Kendall’s τ Pearson

MS E IoU sIoU Ours MS E IoU sIoU Ours MS E IoU sIoU Ours

Camvid -0.173 -0.279 0.175 -0.074 0.190 -0.006 -0.108 0.030 -0.050 0.114 0.088 -0.050 0.071 -0.024 0.091
Cityscapes -0.356 -0.390 -0.306 -0.153 0.056 -0.166 -0.188 -0.115 -0.090 0.108 -0.263 -0.241 -0.191 -0.154 0.216

SUIM 0.052 0.051 0.191 0.097 0.237 -0.014 -0.016 0.084 0.075 0.078 -0.024 -0.028 0.230 0.164 0.112

Average -0.159 -0.053 0.020 -0.043 0.161 -0.062 -0.104 0.0003 -0.022 0.1 -0.066 -0.106 0.037 -0.005 0.140

Table A4: Comparison of different ensemble transferability estimation metrics for semantic segmentation tasks. On average,
we beat all the previously proposed methods for estimating transferability for semantic segmentation in terms of correlations.
Note, MS: MS-LEEP, E: E-LEEP, IoU: IoU-EEP, sIoU: SoftIoU-EEP.

Target Dataset Weighted Kendall’s τ Kendall’s τ Pearson
Standard Frobenius Standard Frobenius Standard Frobenius

Oxford102Flowers 0.616 0.614 0.400 0.390 0.456 0.463
OxfordIIITPets 0.558 0.539 0.453 0.446 0.666 0.660

Caltech101 0.565 0.557 0.335 0.329 0.486 0.483
StanfordDogs 0.477 0.581 0.427 0.508 0.604 0.628
StanfordCars 0.486 0.445 0.368 0.361 0.549 0.544

Average 0.540 0.547 0.397 0.407 0.552 0.556

Table A5: In this table, we report the change in correlations obtained using a Frobenius norm based regularizer rather than a
standard (non-regularized) method for the fully-supervised pre-trained models (classification tasks).

train set. Also, we standardize all three terms in OSBORN
to avoid the dominance of any term on the others.
Input Data. In the case of classification tasks, we resize the
input images to 224× 224, and in the case of semantic seg-
mentation, we resize them to 256× 256 (for computational
feasibility). Since semantic segmentation is a dense pre-
diction task with a high computational cost, we follow the
strategy mentioned in [A1] and sample 1000 pixels from an
image. Considering class imbalances in semantic segmen-
tation datasets, we sample pixels inversely proportionally to
the frequency of their class categories in the target dataset,
similar to what MS-LEEP performed in their experiments.

A5. Visualization of Results

In Fig A2, we show t-SNE plots for data points of differ-
ent classes in StanfordCars when passed through ensembles
selected using various methods. We see that the ensemble
selected by our method is better at segregating classes and
closer to the Optimal as compared to MS-LEEP.

A6. Results with Frobenius Norm Regularizer
As mentioned in Section 3 of the paper, there is an option

to use a regularizer to solve the OT problem. In this section,
we investigate the usage of a Frobenius norm regularizer
[A15],[A5] in the experiments for image classification tasks
(both fully-supervised and self-supervised pre-training set-
tings). In Tab. A5, we show the results of OSBORN with
the use of a Frobenius norm regularizer (column: Frobe-
nius) and without any regularizer (column: Standard) for

the fully-supervised pre-training setting. We observe that
both variations give comparable results on an average. In
Tab. A6, we report the results for a self-supervised pre-
training setting. In contrast to Tab. A5, we observe that a
Frobenius norm regularizer improves the performance sub-
stantially in this case. We hypothesize that self-supervised
pre-training may make a model more conducive to the
source datasets, which a Frobenius norm regularizer offsets
while performing optimal transport computations by mak-
ing them much easier and structured.

A7. Weighted version of OSBORN
While our results in the main paper showed that OS-

BORN outperforms existing state-of-the-art as is in its sim-
ple form, we conducted additional experiments to study
the influence of weighting each component of OSBORN.
Our studies showed that this can vary for different tar-
get datasets. Fig. A1 shows these results for the Ox-
ford102Flowers dataset. For target datasets such as Ox-
fordIIITPets and Oxford102Flowers, we observe that when
we give more weightage to WD and subsequently to WT , as
compared to WC , we achieve higher correlations. We be-
lieve this is because these datasets have some fine-grained
characteristics in each class, which need more attention for
classification. We believe that such a trend holds for trans-
fer from coarse-grained to fine-grained datasets in general,
while we observed a higher weightage to WT to provide
more favorable results in other settings. As stated earlier,
while not using any weighted coefficients for the terms in
OSBORN is by itself beneficial, carefully picking weights



Target Dataset Weighted Kendall’s τ Kendall’s τ Pearson
Standard Frobenius Standard Frobenius Standard Frobenius

Oxford102Flowers 0.492 0.549 0.293 0.336 0.272 0.306
OxfordIIITPets 0.316 0.357 0.123 0.139 0.193 0.232
StanfordDogs 0.140 0.170 0.074 0.110 0.210 0.236
Caltech101 0.484 0.488 0.279 0.308 0.345 0.374

StanfordCars 0.207 0.260 0.100 0.139 0.198 0.232

Average 0.328 0.365 0.174 0.206 0.244 0.276

Table A6: In this table, we understand the difference in correlations obtained using a Frobenius norm-based regularizer rather
than a standard (non-regularized) method for the self-supervised pre-trained models (classification tasks).

Figure A1: Relation between weighted coefficient values for terms in OSBORN and corresponding correlation scores for
Oxford102Flower

for a specific target dataset can further improve perfor-
mance. Learning these weighting coefficients would be an
interesting direction for future work.

A8. Balancing Three Components of OSBORN

To study further on importance of each component of
OSBORN, we conducted experiments by completely re-
moving one of the terms and reporting the resulting correla-
tions/results in Table A7. The analysis demonstrates, inter-



Figure A2: t-SNE plots of features learned by corresponding method’s ensembles on StanfordCars dataset. ‘Optimal’ chooses
best ensemble with exhaustive search

Target Dataset WD +WT +WC WD +WT WD +WC WT +WC

OxfordIIITPets 0.666 0.539 0.657 0.622
Oxford102Flowers 0.455 0.418 0.435 0.405

StanfordCars 0.548 0.524 0.526 0.512
StanfordDogs 0.604 0.496 0.643 0.563

Caltech101 0.486 0.501 0.517 0.309

Average 0.552 0.496 0.556 0.482

Table A7: Comparison of pearson corr. scores. Bold rep-
resents highest score, Underline represents second highest
score.

estingly, that the inclusion of the WC term significantly im-
proves correlation scores. Our metric includes domain dif-
ference (WD) and task difference (WT ) besides the model
cohesiveness term (WC). While selecting models from the
source pool, our objective is not just minimizing the model
disagreement via (WC) but the entire metric. Through the
interplay and equilibrium of these three components, model
collapse is prevented.
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