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This supplementary material provides further implemen-
tation details, experimental results, and visualizations, not
included in the main text.

A. Implementation Details

We provide additional details on the architectures used
in the experiments of the main paper.

A.1. 3D Correspondence Architecture

We perform experiments on the FAUST dataset [1]. Fol-
lowing [10], our network takes as input features the vertex
coordinates in their raw 3D XYZ form and involves a se-
quence of linear layers, (Lin) and mesh operators (MConv)
to process them. The overall architecture is built as a
stack of: Lin(16) → 3 × {MConv(16)} → Lin(16) →
Dropout(0.5) → Lin(6890), where the number of output
features is indicated in parentheses. Trainable weights are
initialized using Glorot initialization [6], and trainable bi-
ases are initialized with a constant value of 0. We use
an exponential linear unit (ELU) as the non-linear acti-
vation function on the output of each mesh-convolutional
layer. We use a Dropout regularization layer [13]. Dif-
ferent from previous state-of-the-art methods, our archi-
tecture uses a fixed number of hidden features (16) for
all layers. The kernel size for the local operator is set to
K = 9. In the main manuscript, we compare against Spi-
ralConvolution using the architecture detailed above. In
the experiments discussed in Sec. 5.1.1 of the main pa-
per, we replace the MConv operator with a SpiralConvo-
lution [7] and benchmarked three different values of hidden
features (16, 32, 64). All experiments ran on a single Tesla
V100. We used the deep learning computing libraries of Py-
torch [11] and MindSpore [8]. The number of floating-point
operations (FLOPS) and parameter count are benchmarked
using the fvcore package.

A.2. 3D Reconstruction with 3DMM Architecture

We perform experiments on the CoMA dataset [12]. Fol-
lowing [3], our architecture is an encoder-decoder network
with 4-stages, where the decoder structure mirrors the en-
coder and replaces downsampling layers (Pool) with up-
sampling layers (UnPool). We used the same downsam-
pling and upsampling approach introduced in [12]. To pro-
cess the output, the network uses a sequence of mesh opera-
tors (MConv), and fully-connected layers in the latent space
(FC) characterized by a latent space dimension d = 16. Af-
ter the last encoder layer, the output is obtained via a last
MConv refinement layer. The overall architecture can be
thus defined as:
3 × {MConv(32) → Pool(4)} → {MConv(64) → Pool(4)}
→ FC(16) → FC(16) → {UnPool(4) → MConv(64)} →
3 × {UnPool(4) → MConv(32)} → MConv(3), with ELU
activation functions used after each MConv layer in the en-
coder and decoder. Starting from this baseline architec-
ture, we experimented with different 3D Morphable Model
(3DMM) variants, ablating the placement of our operator
and kernel sizes. In particular we report results for three
different configurations: Ours-II, -III, -IV. Ours-II vari-
ant uses MConv implemented as [SpiralConv, SpiralConv,
Ours, Ours ]. Ours-III uses [SpiralConv, Ours,Ours, Ours].
Lastly, Ours-IV uses our mesh-operator in every MConv
layer. Moreover, we experimented with different kernel
sizes for the local processing K = [4, 9, 14]. All experi-
ments ran on a single Tesla V100.

A.3. Learnable Pooling

In Sec. 4 of the main paper, we suggest relaxing the Spi-
ralConvolution bias of local and static receptive fields us-
ing a learnable pooling function which allows our operator
to dynamically expand its receptive field to arbitrary sizes,
and potentially even to the entire mesh without the need to
compute the weight tensor of N2 parameters. We give here
some additional implementation details. First, recall that



the output of the learnable pooling can be written as:
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where WS
ml is a triangular matrix of ones implementing a

cumulative sum over X2
inmr along the m dimension and

W P
iln = fP (Xinmr) is a dynamic function predicting the

size of the receptive field for each mesh and vertex as one-
hot vectors along the l dimension, with (l ∈ [1,M ]).

In practice, we implement fP in two steps. First, we
apply a linear layer to Xinmr to predict a tensor of receptive
sizes sin, restricted to the range [0, 1] with a clip operator
and then scaled to [0,M ]. Then we convert this tensor into
one-hot encodings W P

iln. To ensure that the operation is
differentiable, we implement a smooth one-hot encoding as:

W P
iln = (1−β) ·OneHot(⌊sin⌋)+β ·OneHot(⌈sin⌉) (2)

where OneHot(.) is a function that converts an integer into
its one-hot representation of length M , ⌊.⌋ and ⌈.⌉ are the
floor and ceiling operators and β = sin − ⌊sin⌋.

B. Additional Experimental Results
In this section, we analyze the generalization ability of

our method by presenting additional experimental results
on large scale networks and two extra datasets. Further, we
analyze the sensitivity of our method to the choice of non-
linear activation function, the number of components used
to approximate the Wimncd tensor.

B.1. Efficiency

In Fig. 2 of the main paper, we measure computational
efficiency using Floating Point Operations (FLOPS) as this
is agnostic to both hardware and implementation. This
analysis shows how our method with 0.82 GFLOPS vastly
outperforms a SpiralConv with a similar complexity (0.81
GFLOPS). Here, we also report run-times measured in mil-
liseconds (ms) per mesh on a V100 Tesla GPU. In the ta-
ble 1, we compare 3DMM equipped with various mesh op-
erators under fair conditions and comparable implementa-
tions. As clearly visible, as our method exhibits the highest
accuracy and the lowest run-time among all compared op-
erators.

Method GAT FeastNet MoNet SpiralNet Ours
Params 50k 49k 48k 48k 54k
Error (mm) 0.762 0.750 0.708 0.635 0.544
Time 12.77s 15,37s 10.55s 8.18s 6.88s

Table 1: Our method vs soft-attention operators.

B.2. Evaluation on large models

To demonstrate that performance of our approach is pri-
marily influenced by its intrinsic design, rather than the

overall capacity, we test networks with higher parameter
count. For this set of experiments, we use the experimen-
tal setup of [5] and augment the features of our model in
a progressive manner as [3, 16, 32, 64, 128], increasing the
latent representation from d = 16 to d = 32. Results are
reported in Table 2. Without any bells and whistles, our
method vastly outperforms all compared methods trained
under the same experimental setup. Ours-III reaches a me-
dian error of 0.106 mm and a parameter count reduced by
almost a factor of three (2.74) when compared to the current
state of the art of LSA. Furthermore, our method exhibits
robust scalability. When its number of parameters is set
to approximately 2M (Ours-III-v2) by increasing the em-
bedding size to [3, 32, 64, 128, 256], it significantly outper-
forms an analogous LSA network, by reducing the median
error from 0.115 mm to 0.084 mm, setting a new state-of-
the-art benchmark on COMA.

Method Median Error (mm) Params

CoMA* 0.248 303K
PCA* 0.210 482K
SpiralNet++ 0.136 500K
LSA-small+ [5] 0.167 551K
LSA-Conv+ [5] 0.115 1886K
Ours-II 0.120 508K
Ours-III 0.106 674K
Ours-III-v2 0.084 1902K

Table 2: Large scale 3DMM models. Results of the method
marked with ”*” are reported as in [5]. Our method showcases
scalability and sets a new state-of-the-art performance on the
COMA dataset.

B.3. Evaluation on additional datasets

We replicate experiments on 3DMM reconstruction on
two additional challenging datasets: Dynamic FAUST [2]
(full-body 3D meshes in a wide range of motions) and SYN-
HAND [9] (varying hand shapes and poses). In agreement
with the rest of the experiments, our novel adaptive formu-
lation consistently outperforms SpiralConv in all considered
cases.

SYNHAND We explore our method for the generation
of hands with various shapes and poses sharing a common
template. We follow [14, 4] and use the synthetic hand 5
million meshed dataset SYNHAND by randomly sampling
100K meshes with a 90:10 split for train and evaluation.
We replicate the experimental setup of the main paper by
comparing our mesh-aware and vertex-aware method to its
static SpiralConv++ counterpart in the same architecture for
two different kernel sizes K = 4 and K = 9. As visible in
Figure 1 our method outperforms SpiralConv++ by a large
margin, with a trend consistent with the rest of the experi-
mental results.



Figure 1: 3DMM on Synhand. Test curves for kernel size = 4 and
9. Using the same encoder-decoder architecture, a simple drop
in replacement of SpiralConv++ layers with our method improve
performance by a large margin.

Figure 2: 3DMM on Synhand. Visualization of receptive field.
Our method adapts the size of the receptive field in a vertex-
adaptive and mesh-adaptive fashion.

Dynamic FAUST Dynamic FAUST dataset extends the
well-known FAUST to a more challenging case, of more
than one hundred moving sequences covering a variety
of actions. The data 40K+ dynamic human body shapes
aligned to a common reference topology containing 6,890
vertices each. We follow [?] data split and follow the same
experimental setup described in the main paper. We trained
our method on various kernel sizes and network sizes, keep-
ing the latent size fixed to 8. We report the performance
of our method compared against other 3DMM variants (i.e.
CoMa, Neural3DMM) and a 3DMM equipped with Spi-
ralConv++ as a baseline. Results are reported in table 3.
As visible, our method is capable of outperforming a stan-
dard SpiralNet of 274K parameters reducing by a three-
fold its parameter count. Moreover, when compared to a
standard PCA explaining 85% of the total variance, our
method is capable of reducing the generalization error of
43 mm. When compared to its closest baseline (Spiral-
Conv++) our method is capable of consistently outperform-
ing it by a large margin on all the evaluated settings for just
a modest increase in parameter count. Together these results
showcase the generalization ability of our method, its high-
quality performance-efficiency trade-off in various settings,
and the importance of an adaptive processing of meshes for
high-quality generation.

Method K l Filter Params Error

PCA * - - - 165k 59.30
SpiralNet++ 4 8 [16,16,16,16] 15k 33.56
Ours-II 4 8 [16,16,16,16] 20k 30.40

Neural3DMM (small)* - 8 [16,32,64,128] 41k 28.69
COMA* 9 8 - 32k 28.09
SpiralNet++ 9 8 [16,16,16,32] 43k 25.73
Ours-II 9 8 [16,16,16,32] 56k 21.60
Neural3DMM* - 8 [128,64,32,32,16] 274k 19.77
Ours-III 9 8 [16,16,16,32] 87k 19.14

SpiralNet++ 14 8 [16,16,16,32] 59k 22.93
Ours-II 14 8 [16,16,16,32] 77k 19.23
Ours-III 14 8 [16,16,16,32] 126k 16.50

Table 3: 3DMM on Dynamic FAUST. We report Generalization
Error in mm as a metric for performance and parameter count as a
proxy for efficiency. l stands for Latent Dimension, K kernel size.
The column Filter report the Encoder filter sizes. PCA with 84.8 %
Explained Variance. ”*” taken from[3] . Our method present the
best performance/efficiency trade off in all the evaluated settings.

B.4. Effect of Non-Linearities

In the main paper, we describe our method as a non-
linear extension of SpiralConvolution. In this section, we
quantitatively show the ability of our method to capture
non-linear dependencies even without the direct use of non-
linear activation functions. Table 4 shows the results of an
ablation study investigating the effect of the ELU activa-
tion function on the performance of Ours-IV 3DMM when
compared to a SpiralConvolution 3DMM baseline. We use
the experimental setup as described in Sec. 5.3 of the main
paper and replace the ELU activations with Identities, eval-
uating both methods using Mean Error and Median Error as
performance metrics. As expected, the performance drop
for SpiralConv is considerable. Changing the ELU acti-
vations with an Identities brings a 50.31% drop in perfor-
mance (from 0.320 to 0.481 median error). Differently, it
can be clearly observed that our method is not impacted at
all by the absence of non-linearities. As visible, it achieves
slightly better results using an Identity activation function
when compared to the use of ELU, with a mean error de-
creasing from 0.439 to 0.435. Together these results high-
light the capacity of our method to work as a non-linear
function of the input.

Method Activation Dataset Mean Error Median Error Params

SpiralConv ELU COMA 0.554 ± 0.674 0.320 92K
SpiralConv Identity COMA 0.857 ± 1.111 0.481 92K

Ours-IV ELU COMA 0.439 ± 0.599 0.244 160K
Ours-IV Identity COMA 0.435± 0.595 0.240 160K

Table 4: Ablation on the use of an activation function. Our op-
erator acts as a non-linear generalization of SpiralConv. Therefore,
is able to capture non-linear correlations between meshes without
the need to use an ELU. Experiments use 3DMM with K = 4
trained and tested on the COMA dataset.



B.5. Effect of R

As discussed in Sec. 4 of the main paper, our approach
involves decomposing the dense weight tensor Winmcd into
a set of smaller factor matrices using CP decomposition.
The construction of these matrices depends on the number
of components employed to approximate the original ten-
sor, denoted as R. In the experiments reported in Sec. 5.3
of the main paper, we assumed that the number of input and
output channels, denoted as C and D, respectively, are equal
and that the rank of the CP decomposition is equal to the in-
put/output dimensions, i.e., R = C. In this section, we extend
the experimental results of the main paper by investigating
the sensibility of our method to the choice of R, by reporting
how the overall performance is affected when we vary the
number of components used by the factor matrices. Table 5
presents the results of an ablation study on the CP decompo-
sition rank R for the 3D Morphable Model (3DMM) Ours-II
with kernel size K = 4, trained and tested on the COMA
dataset. The table shows the results for different values of
R and R ratio, which is the ratio of the number of compo-
nents used with respect to the input/output dimension. As
expected, results show how decreasing R results in higher
approximation error and lower performance. The method
performs best when R is 128 and worst when R is 8, with
median errors going from 0.270 to 0.413. It also highlights
the importance of an appropriate choice for the number of
R components used to approximate the weight tensor. In
fact, a reduction in performance does not always result in a
decrease in parameter count. For example, choosing a ra-
tio of 0.25 compared to 0.5 implies a decrease in parameter
count of 0.98% (from 102K to 101K parameters) but a 17%
reduction in performance, (from 0.353 to 0.413 median er-
ror). Differently, reducing the ratio from 4.0 to 2.0 show
an opposite trend, with the number of parameters cut by
47.3%(from 264K to 139K) but an increase in the median
error of 5.6%(from 0.270 to0.285). Overall, these results
showcase how the trade-off between model complexity and
performance cannot be always justified solely by parameter
count, highlighting the impact of the characteristics of the
method used.

Method C,D R R ratio Mean Error Median Error Params

Ours 32 128 × 4.0 0.466 ± 0.602 0.270 264K
Ours 32 64 × 2.0 0.492 ± 0.632 0.285 139K
Ours 32 32 × 1.0 0.512 ± 0.665 0.296 106K
Ours 32 16 × 0.5 0.604 ± 0.764 0.353 102K
Ours 32 8 × 0.25 0.697 ± 0.852 0.413 101K

Table 5: Ablation on the CP decomposition rank R. We use
the 3DMM Ours-II K=4 trained and tested on the COMA dataset.
Decreasing R results in higher approximation error and lower per-
formance. R ratio describes the ratio of components used with
respect to the value of input and output dimensions.

C. Additional Qualitative Results
In this section, we provide additional qualitative compar-

isons and visualizations for the model described in Sec. 5 of
the main paper.

C.1. Interpolation in the Latent Space

We extend the results on 3DMM of the main paper by
providing visualizations for the length of the spirals esti-
mated by the three layers in our network that include our
operator. We showcase the ability of our model to generate
new realistic representations, transitioning from one expres-
sion to another via interpolation. In practice, we choose two
samples from our test set, encoding them both in the latent
space as Z1

mnd, Z2
mnd. Then we proceed by generating their

intermediate encodings by sampling the line that connects
them in the latent space as Zmnd = aZ1

mnd+(1−a)Z2
mnd,

where a ∈ (0, 1). Visualizations are reported in Figure 3.

Figure 3: Interpolation on the COMA dataset using Ours-III net-
work d = 16. We visualize results for a = [0, 0.25, 0.5, 0.75, 1].
Our model is able to generate realistic new samples from the dis-
tribution.

C.2. 3D Correspondence Adaptive Receptive Fields

We extend Sec. 5.2 of the main paper by providing ad-
ditional visualization of the receptive field learned by our
mesh operator in Figure 4. We show the length of the spi-
rals estimated by the three layers in our network which in-
clude our operator. We illustrate spirals for various vertices
in three different examples of the FAUST test set. In all
cases, the dynamic receptive fields of the three layers are
presented sequentially from left to right. As clearly visible,
even in absence of any direct supervision, our mesh operator
is capable of learning spirals of progressively longer length,
hence demonstrating the importance of adapting the recep-
tive field throughout the different layers of the network to



Figure 4: Receptive field predicted by our operator for three consecutive layers of the same network trained on the FAUST dataset for the
task of 3D shape correspondence. Note that the architecture deploys no pooling layers. Our method predicts the length of the spiral for
each mesh and vertex, progressively enlarging the length of the spiral to learn hierarchical representations.

build consistent hierarchical representation.

C.3. 3D Reconstruction Adaptive Receptive Fields

We extend Sec. 5.3 of the main paper providing addi-
tional visualization of the receptive field learned by our
mesh operator in Figure 5. We illustrate the length of the
spirals estimated by the last layer of our 3DMM for var-
ious vertices in six different examples of the COMA test
set. In all cases, dynamic receptive fields from our method
are presented on the right meshes, whereas fixed (K=9) re-
ceptive fields from SpiralConvolution are on the left ones.
As clearly illustrated by these comparisons, our mesh op-
erator is capable of learning spirals of markedly different
lengths, hence demonstrating the importance of tailoring
the receptive field to the local structure of the input mesh
centered around the reference vertex. Interestingly, our
method in some cases generates spirals of length similar
to the baseline (e.g. 7, 12, 16, 9), whereas in other cases
it learns to exploit long-range dependencies by constructing
much longer spirals (e.g. 45, 61, 77, 90). Our implementa-
tion based on Summed-Area-Table makes the complexity of
such dynamic spatial reasoning independent from the num-
ber of vertices used, hence allowing the proposed method
to adapt to the underlying structure of the mesh, eventu-
ally producing higher-quality outputs at no additional cost
in complexity.

C.4. 3D Reconstruction Error

Our method acts as a non-linear extension of the Spi-
ralConvolution layer and has three key features: firstly, it
is adaptable to the spatial characteristics of the mesh; sec-
ondly, it is dynamic in nature, meaning that its weight ten-
sor reacts to each mesh in a distinctive manner; and thirdly,
it can expand its receptive field through learnable pooling,
which has the potential to cover all vertices in the mesh.
In Sec. 5.3.2 of the main paper, we evaluate the impact
of each characteristic on the performance of SpiralNet++,
showcasing the contribution of each inductive bias on the
final reconstruction loss. Here, we extend these experimen-

tal results with qualitative comparisons among different lay-
ers. Figure 6 shows the visualization of the per-vertex Eu-
clidean error with respect to the ground truth for a Spiral-
Net++ baseline of 32 channels (first row) and four 3DMM
created by adding layers with different inductive biases to
SpiralNet++, as described in the main paper. As clearly vis-
ible from the figure, the use of Wk does not provide any
particular advantage over the baseline, since the informa-
tion contained in Wk is already included in the baseline ten-
sor Wkcd. As expected, the other operations increasingly
improve performance. Observing each example from the
top row to the last row highlights the contribution of each
new characteristic to the output generated by the 3DMM.
The last row shows the results of the layer which integrates
non-local reasoning, vertex-wise adaptivity (i.e., spatially
adaptive), and instance-wise adaptivity (i.e., dynamic). The
proposed method achieves the lowest reconstruction error,
outperforming all other layers and the baseline configura-
tion, demonstrating the importance of adaptive processing
with dynamic receptive fields.



Figure 5: Receptive field of SpiralConvolution (left) and our operator (right). Our method predicts the length of the spiral for each
mesh and vertex. Compared to a static receptive field of length 9, is capable to adapt its response, obtaining sequences ranging from length
3 to length 90. Due to its efficient implementation, the size of the spiral considered does not impact the complexity of the model.

Figure 6: Qualitative comparison of 3DMM with different inductive biases. Visualization of the per-vertex euclidean distance from
ground truth (mm) for a SpiralNet++ baseline (ch=32) augmented with different layers. Errors are saturated at 10mm. Each layer incorpo-
rates a different characteristic in the model. Observing each example from the top row to the last row highlights the contribution of each new
characteristic to the 3DMM. The last row shows how the integration of non-local reasoning, vertex-wise adaptivity (i.e. spatially-adaptive),
and instance-wise adaptivity (i.e. dynamic) achieves the lowest reconstruction error.
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