
Appendix

A. Video Results

We urge readers to view the additional video gener-

ation results on the 3D-FRONT and KITTI scenes. We
show our novel rendering videos in comparison to EG3D [7]
and GSN [15]. The videos are best viewed by opening our
project page. We note that our model consistently produces
more realistic scenes that are view-consistent, whereas the
generated scenes from our baselines have more artifacts. Fur-
thermore, to showcase that our generated scenes have more
accurate geometries, we visualize the corresponding depth
maps for our generated scenes. We observe that in compari-
son to EG3D [7] our depth maps are consistently plausible,
less noisy and better capture the 3D object geometries as
well as the backgrounds.

More specifically, we note that the results of EG3D on
the bedroom datasets suffer not only from the lower visual
qualities but also from the structural errors of creating two
symmetric scenes about the feature plan. Moreover, in the
more challenging living room scenes with many objects,
GSN and EG3D fail to generate recognizable objects. In
contrast, CC3D consistently synthesizes high-quality, view-
consistent scenes. Finally, on the KITTI-360 scenes, EG3D
and GSN suffer from significant artifacts in both RGB and
depths with large view changes.

B. Layout Consistency

We conduct an experiment to measure the layout consis-
tency between the input semantic layouts and output top-
down renderings of the scenes. To this end, we render all
5515 bedroom scenes with our trained models from top-
down views. To test the effects of the layout consistency
loss, as introduced in Sec. 3.3 of the main document, we
obtain two generated top-down images, one rendered from
the model trained with and the other one trained without the
layout consistency loss. We pair the top-down renderings
with ground truth semantic labels and separate the obtained
datasets into train and test splits using a ratio of 0.85. Then,
we train a DeepLabv3 [9] semantic segmentation model to
predict the ground truth semantic segmentations from the
rendered town-down images. Essentially, the more consis-
tent the layouts and the top-down renderings the easier it
becomes for the segmentation model to learn. Therefore,
better test performance likely indicates higher consistencies.
In Tab. 3, we indeed observe an improved IoU numbers
when training our model with layout consistency loss.

In addition, we conducted another experiment where we
trained Faster R-CNN [45] on top-down renderings to detect
instances w.r.t. the input layout and evaluate using average
precision (AP) and average recall (AR) with the COCO
evaluator. The consistency metrics are generally high and we

observe improved numbers (AP: 0.774, AR: 0.809) against
the model without the consistency loss (AP: 0.719, AR:
0.747) in Eq. 4 of the main paper.

Table 3. Quantitative measures of semantic consistency – be-
tween input layouts and top-down rendering outputs on 3D-FRONT
Bedroom scenes.

Method IoU "

Ours 0.7182
w/o Layout Consistency loss 0.6593

C. Implementation Details

Below we share the implementation details of our training
and testing pipelines. To promote reproducibility, we will
release the code to the public upon acceptance.

Baselines. We use the R1 regularization [34] across all
datasets and models. We replace the sphere-based camera
sampling in EG3D [7] and GIRAFFE [39] to allow freely
moving cameras, which are significantly challenging to learn
from. As stated in the main text, we sampled the cameras by
first performing the distance transform and then randomly
sampling locations where the distance value is above the
threshold. For bedrooms, we orient the camera toward a
randomly sampled point within the bed bounding box and
for living rooms, we used the largest object in the scene. For
GSN [15], we do not use depth maps as supervision and train
on single-view image collections in the same setup as all
other models. We train all models using 3,000,000 images
for all datasets and models with batch size 32.

From our qualitative evaluations in the main paper, we
note that the generated scenes of GIRAFFE [39] are quite
dark. We observed that the low brightness of GIRAFFE
results can be prevented with higher R1 regularization, how-
ever, this led to many samples being completely black and
higher FID scores. Hence, we used the regularization factor
which obtains the lowest FID score for a fair comparison.

Even though we show several generated scenes using
GSN [15], we would like to note that training GSN on 3D-
FRONT living rooms and KITTI-360, even with hyperpa-
rameter tuning was not trivial and resulted in the model
collapsing. We hypothesize that GSN requires depth super-
vision for better performance on these datasets.

Training Details. We build our model on top of the
EG3D [7] pipeline, hence we follow their implementation
protocol and hyperparameters unless otherwise stated. We
use a discriminator learning rate of 0.002 and a generator
learning rate of 0.0025 with Adam optimizer using �1 = 0,
�2 = 0.99, and ✏ = 10�8. Our mapping network transforms
a 512 latent code vector into an intermediate latent code with
2 fully connected layers of dimension 512. We do not apply



any pose conditioning to the generator or the discriminator
networks. As stated above, we abandon the sphere-sampling
of camera locations. Our model takes around 2 days to
converge using 4 NVIDIA V100 with 32 GB memory.

Semantic Layout Details. As mentioned in the main doc-
ument, we process datasets-dependent layouts L as con-
ditional inputs to our model. To prepare the input L we
discretize the provided semantic 2D floor plans onto the 2D
grids. For indoor scenes, i.e., 3D-FRONT bedroom and liv-
ing room scenes, we simply project the 3D bounding boxes
of the scenes onto the ground plane and encode the semantic
class of each pixel using a one-hot vector and a binary room
layout mask. The semantic feature channels are concatenated
with the local coordinates of each bounding box (origin at
the left-top corner of the bounding boxes at their canonical
orientations), providing orientation information to the subse-
quent U-Net. In total we concatenate features comprising i)
a binary mask of the room layout (1), ii) local coordinates of
each object (3), iii) one-hot embedding of the semantic lay-
out (16), and iv) the global latent noise (512). This results in
a feature grid with 532 channels for 3D-FRONT. We directly
obtain a semantic floorplan representation for outdoor scenes
by rendering the 3D semantic annotations from a top-down
view. Hence, the semantic maps are pixel-based as opposed
to bounding-box-based. For KITTI-360 we concatenate fea-
tures comprising i) the top-down rendered semantic layouts
encoded as a one-hot feature grid (59) and ii) latent noise
(512). This results in a feature grid with 571 channels for
KITTI-360.

C.1. Architecture Details

Our U-Net is composed of an encoder and a decoder net-
work, each of which is composed of the building blocks of
StyleGAN2. For the encoder, we use the StyleGAN2 syn-
thesis layers except that we replace the upsampling with the
max-pool downsampling operation and use style-modulation
with constant style code (i.e., the encoder network is inde-
pendent of the sampled style code s). The downsampling
layers are repeated to make the feature resolution 42. We
turned off the style modulation with the global latents in
order to keep the encoder deterministic and only modulate
the decoder part of the U-Net. Our U-Net decoder closely
follows the StyleGAN2 architecture and starts with a learn-
able feature with 42 resolution. We use skip connections to
concatenate the encoder features to the intermediate features
of the corresponding decoding layer. In contrast to the en-
coder, we modulate the decoder via FiLM with the per-layer
style code that is obtained by processing the global style
noise vector s with the StyleGAN2 mapping network.

The discriminator architecture follows that of StyleGAN2,
except that we attach a decoder network that is symmetric
with the encoder network. The two network components are
connected via skip connections as in a typical U-Net. We

Table 4. Quantitative ablation studies on 3D-FRONT living
rooms. We measure the realism of generated 3D scenes without
using 2D layout conditioning (i.e., unconditional version of our
model) or using the layout consistency loss described in Sec. 3.3.
Moreover, we swap out our 3D extrusion representation with the
“floorplan" and tri-plane schemes, proving the advantage of our
method.

Method FID (#) KID (#)

Ours 40.3 34.5

w/o Layout Conditioning 60.1 54.1
w/o Layout Consistency Loss 44.7 38.0
w/ GSN’s Floorplan Representation 65.6 59.0
w/ EG3D’s Tri-plane Representation 69.3 60.8

use k = 8 for the segmentation branch.

D. Discussions

D.1. Note on Tri-Plane Results

As discussed in the main text, we hypothesize that the
tri-plane representation is conceptually not ideal for repre-
senting large-scale scenes due to weak geometric inductive
bias when generating the tri-plane jointly. Moreover, as
the scene gets larger, the same plane-projected features are
used to describe totally different objects in a scene, which
hampers the representational power of tri-planes. Indeed,
in the included video websites, one can observe that the
EG3D results contain artifacts where the scene contains two
bedrooms, symmetric about one of the three planes (see
Fig. 11). We also note that the ablated version of our
conditional model using the Tri-plane representation suffers
from severe layout inconsistencies. That is, we observe that
the input layout is almost completely ignored and the out-
put scenes have almost no resemblance to the input layouts,
which clearly indicates that the tri-plane representation lacks
geometric inductive bias in our use-case.

D.2. Note on “Floorplan" Results

We discussed in the main text how the “floorplan” repre-
sentation requires a larger MLP because the vertical infor-
mation needs to be decoded, or “generated” by the MLP net-
work. Indeed, we observe that GSN [15] adopts an 11-layer
MLP with 128 channels in the hidden layers. In comparison,
EG3D and our representation require using a two-layer MLP
with 64 channels in the hidden layer. Approximately, our
MLP network size (in number of weights) is less than 20
times smaller than that of GSN’s.

In our ablation study in the main text (Tab. 2), we swap
our “extrusion” representation with a “floorplan” representa-
tion. Here, to make the comparison fair, we used the same
two-layer MLPs for the experiment. Note that, while increas-



ing the size of the MLP might improve its performance, it
comes at a significant cost of computational resources.

E. Additional Results

In Fig. 12 and Fig. 13, we show additional visualizations
of our conditional generation results. Note that the gener-
ated 3D scenes generally follow the input layouts. More-
over, we sample three different global latent vectors which,
when applied to the generation process, synthesize scenes
with different styles. In Fig. 14, we demonstrate the object
removal capability. Note how we can remove individual
objects such as a chair and a coffee table. In Fig. 16 we visu-
alize KITTI-360 layouts and renderings. While our model
generates better image quality and view consistency than
previous works, we acknowledge that the current model has
difficulties closely following complex layouts.



Figure 11. Failure case of EG3D [7] – on 3D-FRONT bedroom. We notice that the tri-plane representation induces replicating the scenes
that are symmetric about one of the feature planes.

Figure 12. Additional results on 3D-FRONT. We visualize the conditional generation results on 3D-FRONT bedrooms with varying latent
codes (shown in three styles). Note that changing the global latent codes results in a change of general styles.



Figure 13. Additional results on 3D-FRONT. We visualize the conditional generation results on 3D-FRONT living rooms with varying
latent codes (shown in three styles). Note that changing the global latent codes results in a change of general styles. We notice that for living
room scenes the layout conditionings are not perfectly respected. For example, the big sofa bounding box of the second example is splitted
into a sofa and a side table.

Depth Maps

Generated 3D Scene

Removal 1 Removal 2

Figure 14. Object removal experiment. We showcase the object removal capability of our approach. Note that from the image on the
leftmost column, we can remove the green sofa chair (middle column) and the black coffee table (right column).
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Figure 15. Translation experiment. We showcase the object translation capability of our approach. Note that from the image on the leftmost
column, we can translate the object to the left (middle column) and right (right column).

Figure 16. KITTI-360 conditioning. Layout inputs and generated 3D scenes for KITTI-360.


