
Appendix

A. Overview

The algorithm of the DOT pipeline is illustrated in

Alg. 1. We provide further qualitative comparisons with

the baseline PlenOctree[4] and our models with recursive

pruning in Fig. 2. We display more qualitative results of our

methods on Fig. 4 and Fig. 5. We also report the per-scene

evaluation against PlenOctree in Tab. 1 and Tab. 2. Ad-

ditionally, to examine the assumption that the neighboring

features can be propagated, we carry out the control exper-

iment in Appendix C.1. Then we verify DOT’s generaliza-

tion ability with the case study described in Appendix C.2.

Finally, more experiment details along the video demos are

presented in Appendix C.3.

B. Additional Results

B.1. Qualitative Comparison

In Fig. 2, we compare our methods, including DOT de-

noted Ours, DOT with recursive pruning Ours(R), PlenOc-

tree with the ground truth GT. As observed in the render-

ing results, our methods show a similar visual quality to

PlenOctree, while shrinking over half the memory sizes.

Noticeably, compared with the ground truth images, both

DOT and PlenOctree can provide satisfactory results re-

garding scenes such as chair in the first row. However, for

more challenging scenes e.g. materials, and drums in the

rest of the two rows, they cannot render the high-frequency

regions e.g. the reflection on the cymbal of the drums pleas-

ingly. The limitation may be addressed by increasing the

sampling density on those regions using sampling opera-

tion like we have discussed in the main paper, splitting the

scenes into the transmitted and reflected components[1], or

using other physical-based rendering approximation[3].

B.2. Qualitative Evaluation

We provide more qualitative results on both the NeRF-

Synthetic(See Fig. 4) and the Tank & Temples(See Fig. 5).

We sample every scene in the datasets, using the poses

picked randomly. All the samples are generated using the

pre-trained DOT model Ours. It turns out that the DOT is

capable of rendering photo-realistic results.

B.3. Per­scene Results

We also provide the per-scene evaluation metrics on the

NeRF-synthetic dataset (See Tab. 1) and Tank&Template

dataset (See Tab. 2).

Algorithm 1 DOT Model Training

1: Declaration:

2: Rays rays, ground truth GT and prediction pred

3: DOT functions: render(),merge() and sample()
4: Use recursive pruning rec, and the epoch number i

5:

6: procedure TRAINING(τ, γ, rays,GT, i)

7: Q← optimization(rays,GT )

8: if i mod T = 0 then

9: pruning(Q, τ)
10: sampling(Q, γ)

11:

12: procedure OPTIMIZATION(rays,GT )

13: rays← permutate(rays)
14: Q, pred← DOT.render(rays)
15: loss←MSE(pred,GT )
16: return Q

17:

18: procedure PRUNING(Q, τ, rec):

19: while True do

20: sel← Q ≤ τ

21: merge(sel)
22: if not rec or sel is empty then

23: break;

24:

25: procedure SAMPLING((Q, γ):

26: sel← topk(γ,Q)
27: sample(sel)

Feature Fusion No Feature Fusion

Figure 1: The ablation study on the feature fusion. We

train the models on the ficus scene of the synthetic dataset

for 100 epochs by feature fusion and initializing properties

to learn from scratch.

C. Technical Details

C.1. Assumption Verification

To verify the neighboring assumption in Sec 3.2 of the

main paper, we conduct a complementary experiment by



disabling fusion (see Fig. 1) in the training process. The

loss of globally consistent features in the highlighted box

confirms that the features are shared across octrees.

C.2. Generalization Ability Verification

Although we target the same scenes as POT, the

generalization ability for other NeRF datasets such as

BlendedMVS[2] is also tested. As shown in Fig. 3, the DOT

outperforms POT with +1.4 PSNR, −15.3 MB memory,

and a more compact octree structure. The zoomed boxes

reveal that DOT provides much more intrinsic details. As

we have included in our conclusion in the main paper, DOT

can’t reduce the excessive training time for its precursor

NeRF-SH, which is required for both POT and DOT, from

which they resample and cache the learned properties. We

welcome interested readers to further the study on the gen-

eralization ability for more detests such as 360 data or the

LLFF dataset.

C.3. Experiment Details

C.4. Device Information

MX150 embedded in the laptop has 384 CUDA cores

with a clock rate of 1468 MHz and a memory data rate of

6.01 Gbps. Its bandwidth is 48.06 GB per second, and its

shared system memory is 4038 MB.

D. Videos Details

The video attached to our supplementary materials con-

sists of the following sections:

1) The general introduction about the octree representa-

tion.

2) The DOT’s sampling and pruning operation demos.

3) The overview of DOT’s pipeline.

4) The Real machine testing on the laptop with MX150.

5) The visual comparison with PlenOctree.

6) The visual comparison between the model our, our(R)

and their compressed models.



OursGT Ours(R) PlenOctree

Figure 2: Comparison on a list of models on NeRF-synthetic.

DOT POT

PSNR:25.40(1.4𝟎 ↑)

Mem(M):26.4(15.3↓)

PSNR:24.00

Mem(M): 41.7

Figure 3: The comparison between DOT and POT on Character scene of BlendedMVS.



DrumsChair Ficus Hotdog Lego Materials Mic Ship

Figure 4: More qualitative results of our DOT on NeRF-synthetic.

Barn Caterpillar Family Ignatius Truck

Figure 5: More qualitative results of our DOT on Tanks&Temples.



PSNR↑

Methods chair drums ficus hotdog lego materials mic ship Avg

PlenOctree 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71

ours(R) 34.74 26.23 31.16 36.67 33.67 29.89 34.23 29.61 32.00

ours 34.82 26.25 31.16 36.76 33.82 30.24 34.24 29.61 32.11

SSMI↑

Methods chair drums ficus hotdog lego materials mic ship Avg

PlenOctree 0.9809 0.9330 0.9705 0.9822 0.9714 0.9549 0.9872 0.8841 0.9580

ours(R) 0.9807 0.9327 0.9716 0.9818 0.9705 0.9498 0.9875 0.8867 0.9577

ours 0.9810 0.9329 0.9718 0.9823 0.9711 0.9547 0.9876 0.8868 0.9585

LPIPS↓

LPIPS chair drums ficus hotdog lego materials mic ship Avg

PlenOctree 0.0223 0.0764 0.0378 0.0319 0.0337 0.0593 0.0168 0.1441 0.0528

ours(R) 0.0225 0.0762 0.0397 0.0338 0.0348 0.0683 0.0171 0.1374 0.0537

ours 0.0221 0.0764 0.0393 0.0317 0.0343 0.0621 0.0169 0.1372 0.0525

FPS↑

Methods chair drums ficus hotdog lego materials mic ship Avg

A100 PlenOctree 593.5 327.9 188.9 256.3 358.1 147.1 577.3 160.4 326.2

A100 ours(R) 755.6 519.9 494.8 348.8 585.0 291.9 925.2 223.9 518.1

A100 ours 753.0 490.0 414.0 327.0 553.8 276.2 870.9 213.0 487.2

3090 PlenOctree 550.2 302.4 117.4 78.8 279.1 59.8 561.4 51.7 250.1

3090 ours(R) 744.3 468.4 536.4 196.6 571.7 249.1 929.5 97.4 474.2

3090 ours 722.8 462.0 488.9 189.7 531.6 249.5 879.6 92.5 452.1

MX150 PlenOctree 15.38 7.59 % % % % 12.81 % %

MX150 ours(R) 19.72 11.56 11.19 7.15 13.56 5.95 19.74 3.90 11.60

MX150 ours 18.87 10.67 9.92 6.70 12.43 5.75 18.19 3.70 10.78

A100 PlenOctree* 675.1 344.0 166.7 204.1 347.5 145.0 610.7 141.0 329.3

A100 ours(R)* 927.5 587.9 486.5 373.0 690.2 318.8 908.0 231.1 565.4

A100 ours* 894.4 550.0 442.7 351.6 638.8 302.4 854.0 215.2 531.1

3090 PlenOctree* 606.9 340.6 167.4 146.7 356.7 72.5 615.8 71.9 288.8

3090 ours(R)* 765.4 501.3 545.1 211.9 593.0 252.7 967.6 101.5 492.3

3090 ours* 733.8 477.2 502.5 207.5 557.1 252.4 909.0 97.7 467.2

MX150 PlenOctree* 15.90 7.85 % % % % 13.62 % %

MX150 ours(R)* 18.8 11.5 11.2 7.3 13.7 5.8 19.6 3.9 11.5

Mx150 ours* 19.6 11.0 10.5 7.3 13.1 5.7 18.8 3.9 11.2

Checkpoint/Memory (GB)↓

Methods chair drums ficus hotdog lego materials mic ship Avg

PlenOctree 0.81 1.3 1.8 2.7 2.1 3.7 0.43 2.7 1.94

ours(R) 0.56 0.60 0.41 1.29 0.81 0.91 0.26 1.53 0.80

ours 0.58 0.65 0.47 1.38 0.91 1.01 0.28 1.70 0.87

PlenOctree* 0.19 0.28 0.43 0.43 0.10 0.26 0.88 0.56 0.39

ours(R)* 0.15 0.15 0.11 0.30 0.21 0.23 0.07 0.38 0.20

ours* 0.16 0.16 0.12 0.31 0.23 0.26 0.08 0.41 0.22

Table 1: Per-scene quantitive results on NeRF-synthetic dataset.* denotes the model is compressed



PSNR↑

Methods Truck Barn Caterpillar Family Ignatius Avg

PlenOctree 26.84 26.80 25.29 32.85 28.20 28.00

ours(R) 27.05 27.45 25.58 32.94 28.22 28.25

ours 27.08 27.43 25.59 33.05 28.25 28.28

SSMI↑

Methods Truck Barn Caterpillar Family Ignatius Avg

PlenOctree 0.8559 0.9067 0.9622 0.9139 0.9480 0.9173

ours(R) 0.8689 0.9099 0.9633 0.9180 0.9494 0.9219

ours 0.8691 0.9099 0.9644 0.9184 0.9488 0.9221

LPIPS↓

Methods Truck Barn Caterpillar Family Ignatius Avg

PlenOctree 0.2259 0.1477 0.0691 0.1296 0.0802 0.1305

ours(R) 0.2067 0.1416 0.0640 0.1203 0.0750 0.1215

ours 0.2070 0.1415 0.0612 0.1194 0.0761 0.1210

FPS↑

Methods Barn Caterpillar Family Truck Ignatius Avg

A100 PlenOctree 94.44 113.47 77.12 129.90 40.41 91.07

A100 ours(R) 180.9 176.50 258.70 234.20 159.50 202.00

A100 ours 159.93 167.09 225.55 222.33 108.59 176.70

3090 PlenOctree 85.55 99.79 39.64 17.39 127.42 73.96

3090 ours(R) 180.45 187.08 302.13 162.79 248.00 216.09

3090 ours 167.08 175.87 248.39 113.00 226.66 186.20

MX150 PlenOctree % % % % % %

MX150 ours(R) % % % % % %

MX150 ours % % % % % %

A100 PlenOctree* 131.4 129.5 87.70 145.50 68.40 112.50

A100 ours(R)* 177.97 178.90 281.52 245.00 156.20 207.92

A100 ours* 170.40 178.33 235.26 234.23 116.00 183.00

3090 PlenOctree* 85.5 99.8 39.6 17.4 127.4 73.9

3090 ours(R)* 348.0 379.0 150.0 275.0 196.0 269.6

3090 ours* 322.0 349.0 117.0 239.0 166.0 238.6

MX150 PlenOctree* % % % % % %

MX150 ours(R)* 2.92 2.85 4.60 2.55 3.89 3.36

MX150 ours* 2.85 2.68 3.87 1.90 3.61 2.98

Checkpoint/Memory (GB)↓

Methods Truck Barn Caterpillar Family Ignatius Avg

PlenOctree 2.5 2.4 2.9 2.3 3 2.62

ours(R) 1.3 1.4 0.4 0.87 0.64 0.92

ours 1.5 1.5 0.53 1.1 0.85 1.10

PlenOctree* 0.60 0.67 0.84 0.53 0.63 0.65

ours(R)* 0.25 0.34 0.37 0.12 0.17 0.25

ours* 0.29 0.37 0.40 0.16 0.21 0.29

Table 2: Per-scene quantitive results on Tanks&Temples dataset.* denotes the model is compressed
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