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A. Dress Code Multimodal and VITON-HD
Multimodal Datasets

In this section, we give additional details about the
dataset collection and annotation process and provide statis-
tics and further examples of the collected datasets.

A.1. Data Preparation

Before extracting noun chunks from the textual sen-
tences of FashionIQ [20] and Fashion200k [3], we per-
form word lemmatization to reduce each word to its root
form. Such pre-processing stage is crucial for the Fash-
ionIQ dataset, as the captions do not describe a single gar-
ment but instead express the properties to modify in a given
image to match its target. Fig. 5 shows two examples of
FashionIQ annotations.

We use the spaCy NLP toolkit1 to extract noun chunks
from textual sentences. To facilitate prompt engineering
at a later stage, we remove the articles at the beginning
of each noun chunk. Subsequently, we filter out all noun
chunks starting with or containing special characters and
keep unique elements. Table 6 reports detailed statistics
about the number of unique captions and extracted noun
chunks from which we start the annotation.

Textual Prompts. As described in the main paper, we rely
on the cosine similarity between CLIP-based image and text
embeddings to associate each garment with the 25 most rep-
resentative noun chunks. We exploit prompt ensembling to
perform such zero-shot association as it is shown in [12]
that this technique improves performance.

The employed textual prompts are:
• a photo of a [noun chunk],
• a photo of a nice [noun chunk],
• a photo of a cool [noun chunk],
1https://spacy.io/

Figure 5: Examples of FashionIQ data type.

Unique Captions Unique Noun Chunks

Dataset Upper Lower Dresses Upper Lower Dresses

FashionIQ [20] 27,339 0 15,101 7,801 0 3,592
Fashion200k [3] 25,959 11,022 16,694 22,898 13,420 15,890

Table 6: Number of unique captions and noun chunks for
each category of the FashionIQ and Fashion200k datasets.

• a photo of an expensive [noun chunk],
• a good photo of a [noun chunk],
• a bright photo of a [noun chunk],
• a fashion studio shot of a [noun chunk],
• a fashion magazine photo of a [noun chunk],
• a fashion brochure photo of a [noun chunk],
• a fashion catalog photo of a [noun chunk],
• a fashion press photo of a [noun chunk],
• a yoox photo of a [noun chunk],
• a yoox web image of a [noun chunk],
• a high-resolution photo of a [noun chunk],
• a cropped photo of a [noun chunk],
• a close-up photo of a [noun chunk],
• a photo of one [noun chunk].

A.2. Annotation Tool for Fine-Grained Annotation

We develop a custom annotation tool using the Django
and Angular web frameworks to ease and speed up the fine-
grained annotation process. Fig. 6 depicts the user inter-

∗Equal contribution.
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(a) (b)
Figure 6: User interface of the custom annotation tool. In (a) the user can select the noun chunks among the proposed ones,
while in (b) the user can manually annotate the garment.

face. In the annotation phase, users are provided with both
model’s image and the corresponding in-shop garment and
should select the three most representative noun chunks per
item (Fig. 6a). If the automatic selection process fails to
suggest three correct noun chunks, the user can manually
insert them (Fig. 6b).

A.3. Coarse-Grained Annotation

After completing the manual annotation process on
Dress Code, we obtain 26,400 different model-garment
pairs (with 8,800 items per category), each associated with
three different noun chunks. To annotate the remaining
27,392 items of Dress Code Multimodal and the 13,679
items of VITON-HD Multimodal, we leverage the manu-
ally annotated image-text pairs and finetune the OpenCLIP
ViT-B/32 [19] model pre-trained on the English portion of
the LAION-5B dataset.
CLIP Finetuning. We finetune both encoders of the Open-
CLIP model using a single NVIDIA A100 GPU for 400
steps, with a batch size of 2048 and a learning rate of 10−6.
As optimizer, we use AdamW [8] with a weight decay of
0.2. We use mixed precision [10] to speed up training
and save memory. During the training process, we mon-
itor the model performance using the top-3 accuracy met-
ric on the test split of the Dress Code Multimodal dataset.
We choose this metric intending to associate each image
with three distinct noun chunks. The out-of-the-box model
achieves a top-3 accuracy of 12.95%, which improves to
16.60% after finetuning. The OpenCLIP ViT-g/14 model
instead achieves a top-3 accuracy of 16.21%, while being
computationally heavier than the ViT-B/32 version. Since
the ViT-g/14 model predicts the set of noun chunks from
which we extract the ground-truth, the actual difference in
performance between the finetuned ViT-B/32 model and the
out-of-the-box ViT-g/14 model could be even higher.

A.4. Extracting Sketches

As mentioned in the main paper, we train a warping
module to generate input sketches for the unpaired setting

(i.e. when we give as input the multimodal information cor-
responding to a garment different from the one originally
worn by the model). In particular, our method involves the
transformation of a given in-shop garment C ∈ RH×W×3

into a warped image of the same garment that fits the model
of a target image I . We employ the warping module pro-
posed in [18], refining the results with a U-Net based com-
ponent [15].

The warping module computes a correlation map be-
tween the encoded representations of the in-shop garment
C and a cloth-agnostic person representation composed of
the pose map P ∈ RH×W×18 and the masked model image
IM ∈ RH×W×3. We use two separate convolutional net-
works to obtain these encoded representations. Based on the
computed correlation map, we predict the spatial transfor-
mation parameters θ of a thin-plate spline geometric trans-
formation [13] (i.e. TPSθ). We then use the θ parameters
to compute the coarse warped garment Ĉ starting from the
in-shop garment C as follows:

Ĉ = TPSθ(C). (5)

To refine the result, we employ a U-Net model that takes as
input the concatenation of the coarse warped garment Ĉ, the
pose map P , and the masked model image IM , and predicts
the refined warped garment C̃.

We train this model on the training set of both Dress
Code Multimodal and VITON-HD Multimodal using a
combination of an L1 loss between generated and target in-
shop garments and a perceptual loss (also known as VGG
loss [5]) to compute the difference between the feature maps
of generated and target garments extracted with a VGG-
19 [16]. We train with a resolution of 256× 192, Adam [6]
as optimizer with β1 = 0.5, β2 = 0.99, and a learning rate
equal to 10−4. We train the network on the VITON-HD
dataset for 30 epochs, while the training on the Dress Code
dataset converges after 80 epochs.



Images Unique Noun Chunks

Dataset Ann. Split Upper Lower Dresses Upper Lower Dresses

Dress Code M. F

Train 7,000 7,000 7,000 4,751 5,914 4,410
Test 1,800 1,800 1,800 2,337 2,861 2,144
∪ 8,800 8,800 8,800 5,284 6,509 4,915
∩ - - - 1,804 2,266 1,639

Dress Code M. C

Train 6,563 151 20,666 7,198 320 8,650
Test 0 0 0 0 0 0
∪ 6,563 151 20,666 7,198 320 8,650
∩ - - - 0 0 0

Dress Code M. F+C

Train 13,563 7,151 27,666 9,163 6,037 9,465
Test 1,800 1,800 1,800 2,337 2,861 2,144
∪ 15,363 8,951 29,466 9431 6,597 9,568
∩ - - - 2,069 2,301 2,041

VITON-HD M. C

Train 11,647 - - 4,823 - -
Test 2,032 - - 2,149 - -
∪ 13,679 - - 5,143 - -
∩ - - - 1,829 - -

Table 7: Number of images and unique noun chunks per
category for both Dress Code Multimodal and VITON-HD
Multimodal. (F) indicates the fine-grained annotation while
(C) indicates the coarse-grained annotation.
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Figure 7: Annotated images per category on Dress Code
Multimodal.

A.5. Additional Statistics and Annotated Samples

Table 7 summarizes the number of images and unique
noun chunks for each category of Dress Code Multimodal
and VITON-HD Multimodal. The table shows that the
datasets share noun chunks between the train and test set
(∩). This behavior is likely due to the limited capacity of
the textual modality to represent the whole semantic infor-
mation of the image. Fig. 7 instead shows the number of
samples for each category highlighting the different anno-
tation strategies on Dress Code Multimodal.

In Fig. 8, we report the word clouds extracted from
the textual annotations, representing the most frequently
used words in the collected noun chunks for each category
of Dress Code Multimodal and VITON-HD Multimodal.
From this visualization, we can notice that the frequency
of the terms varies according to the garment category, and

(a) (b)

(c) (d)
Figure 8: Vocabulary of the frequent words scaled by fre-
quency for dresses (a), lower-body clothes (b), upper-body
clothes (c) of Dress Code Multimodal and clothing items of
VITON-HD Multimodal (d).

the semantic richness of our annotations is consistent across
different garment types.

In Fig. 11 and Fig. 12, we report samples from the fine-
grained and coarse-grained subsets of Dress Code Multi-
modal, respectively. Instead, in Fig. 13, we show additional
examples extracted from VITON-HD Multimodal.

B. Evaluation Metrics
This section provides additional details about the evalu-

ation metrics used in our experiments. We first give some
clarifications about the CLIP-S metric and then present an
accurate formulation of the proposed sketch distance and
pose distance metrics.
CLIP-S. The CLIP score [4] is a well-known metric to eval-
uate the similarity between images and textual sentences. In
our setting, we employ this metric to assess the coherence
of the generated images with respect to the corresponding
textual inputs used to condition the generation process. As
mentioned in the main paper, our implementation relies on
the CLIP-S of the TorchMetrics library [2] and adopts the
ViT-H/14 trained on LAION-2B as the CLIP model. Specif-
ically, we crop the generated image using the bounding box
used to mask it and paste the resulting crop on a white back-



ground, obtaining a final resolution equal to 224×224. The
adopted metric is defined as follows:

CLIP-S(I, Y ) = max(100 ∗ cos(EĨ , EY ), 0), (6)

where EĨ represents the CLIP embedding of the generated
portion of the image Ĩ pasted on white background, EY

represents the CLIP embedding for the caption Y , and cos
is the cosine similarity. We calculate the cosine similarity
between the image and caption embeddings and scale the
result by a factor of 100. If the cosine similarity is negative,
then CLIP-S is zero.
Pose Distance (PD). To measure the coherence of human-
body poses between the generated image and the original
one, we propose a novel pose distance metric that estimates
the distance between human keypoints extracted from the
original and the generated images. Given a ground-truth im-
age I and a generated image Ĩ , we extract human keypoints
from each of them using the keypoint extraction network K
(i.e. in our case, we use OpenPifPaf [7]) and identify the
set of keypoints falling in the mask M as K(·)M . We com-
pute the final score with an ℓ2 distance between each pair
of real-generated corresponding keypoints (i.e. k ∈ K(I)M
and k̃ ∈ K(Ĩ)M , respectively), weighting each keypoint
distance with the detector confidence to consider possible
estimation errors. Formally, our pose distance metric is de-
fined as follows:

PD(I, Ĩ) =

∑
k∈K(I)M
k̃∈K(Ĩ)M

√
(kx − k̃x)2 + (ky − k̃y)2 · CFkk̃

∑
kk̃ CFkk̃

,

(7)
where, for each pair of real-generated keypoints, CFkk̃ is
1 if the confidence of the detector K on both keypoints is
greater or equal to 0.5, and 0 otherwise.
Sketch Distance (SD). To evaluate the adherence of the
generated images to the constraints imposed by the input
sketch, we propose a new sketch distance metric. To com-
pute the metric, we first extract the ground-truth and the
generated garments label maps using an off-the-shelf se-
mantic segmentation model2. We segment the garment ac-
cording to its category and paste it on a white background
of shape 512 × 384. We refer to these new images with IS
and ĨS , respectively. Then, we extract the garment sketches
of both the ground-truth and the generated images using an
edge detector network Edge (i.e. PIDInet [17]). Finally,
we compute the mean squared error between the extracted
sketches, weighting the per-pixel results on the inverse fre-
quency of the activated pixels. Formally, the introduced
sketch distance metric is defined as follows:

SD(IS , ĨS) = MSE
(
Edge(IS), Edge(ĨS)

)
∗ p, (8)

2https://github.com/levindabhi/cloth-segmentation

(a)

(b)

Figure 9: User study interface, where (a) corresponds to the
realism evaluation and (b) refers to the coherence analysis
between generated images and the given multimodal inputs.

where p is the inverse pixel frequency. It is noteworthy that
sketch thresholding could be applied before distance com-
putation. Nevertheless, we argue that avoiding threshold-
ing enables an effective comparison of hand-drawn ground-
truth grayscale sketches. This approach can facilitate the
evaluation of methods that generate images conditioned us-
ing the sketch. Therefore, we think the proposed metric can
be a valuable tool for comparing sketch-guided generative
architectures.

C. User Study

As mentioned in the main paper, we conduct a user study
to evaluate the realism of generated images and their adher-
ence to the given multimodal inputs, comparing our results
with those from the considered competitors. To this aim,
we develop a custom web interface presenting two different

https://github.com/levindabhi/cloth-segmentation


Modalities Upper-body Lower-body Dresses

Model Resolution Text Keypoints Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

Paired setting
Stable Diff. [14] 256×192 ✓ 22.86 9.73 28.31 4.29 - 28.78 13.93 26.41 4.97 - 36.31 20.74 27.84 5.67 -
FICE [11] 256×192 ✓ ✓ 46.41 32.26 28.58 7.46 - 41.68 27.22 28.14 7.54 - 34.06 20.58 29.47 6.06 -
MGD (ours) 256×192 ✓ ✓ 11.88 2.82 31.48 1.91 - 10.24 1.55 30.50 2.58 - 11.87 2.03 32.05 2.57 -

Paired setting
Stable Diff. [14] 512×384 ✓ 21.00 8.59 30.17 7.95 0.310 28.40 14.48 28.02 9.96 0.345 33.12 17.39 29.36 9.86 0.450
SDEdit [9] 512×384 ✓ ✓ ✓ 15.78 5.52 29.73 4.21 0.222 16.64 6.07 29.00 6.51 0.256 21.53 9.02 28.89 5.67 0.270
MGD (ours) 512×384 ✓ ✓ ✓ 12.42 3.71 31.90 3.72 0.190 10.70 2.01 31.10 5.70 0.210 11.38 1.89 32.02 4.93 0.194

Unpaired setting
Stable Diff. [14] 256×192 ✓ 22.86 9.73 28.31 4.29 - 28.78 13.93 26.41 4.97 - 36.31 20.74 27.84 5.67 -
FICE [11] 256×192 ✓ ✓ 49.77 35.37 26.48 7.64 - 44.94 30.39 25.42 7.84 - 39.04 25.27 26.14 6.39 -
MGD (ours) 256×192 ✓ ✓ 14.50 3.48 29.24 2.39 - 13.70 2.48 29.09 3.32 - 13.72 2.50 30.37 3.17 -

Unpaired setting
Stable Diff. [14] 512×384 ✓ 24.23 10.39 28.64 8.59 0.413 30.90 15.38 27.03 10.43 0.453 35.96 19.94 28.37 10.60 0.609
SDEdit [9] 512×384 ✓ ✓ ✓ 17.86 6.50 27.36 4.78 0.357 19.16 6.85 27.08 7.53 0.399 22.97 9.98 26.85 6.42 0.411
MGD (ours) 512×384 ✓ ✓ ✓ 15.99 4.50 29.76 5.41 0.291 14.82 2.81 29.96 7.96 0.289 14.71 3.63 30.41 7.15 0.252

Table 8: Category-wise quantitative results on the Dress Code Multimodal dataset.

Dress Code Multimodal

Sketch Cond. FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

1.0 5.44 1.82 31.03 4.43 0.363
0.8 5.65 1.96 31.17 4.42 0.364
0.6 5.73 2.11 31.31 4.50 0.365
0.4 5.80 2.17 31.44 4.51 0.368
0.2 5.74 2.11 31.68 4.72 0.374
0.0 6.31 2.33 31.67 5.31 0.405

Table 9: Ablation study by varying the sketch conditioning
steps on the paired setting of Dress Code Multimodal.

VITON-HD Multimodal

Sketch Cond. FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

1.0 13.01 4.00 30.32 7.05 0.225
0.8 12.75 3.73 30.46 7.11 0.250
0.6 12.76 3.75 30.53 7.13 0.263
0.4 12.71 3.67 30.56 7.12 0.280
0.2 12.81 3.86 30.75 7.22 0.317
0.0 12.40 3.36 30.34 7.53 0.435

Table 10: Ablation study by varying the sketch conditioning
steps on the unpaired setting of VITON-HD Multimodal.

surveys. The former (Fig. 9a) assesses the realism of the
generated output asking the user to select for each compar-
ison the image that seems more realistic. In the latter (Fig-
ure 9b), given the model’s image, the set of noun chunks
describing the garment, and the sketch, the user is asked to
select which of the two proposed outputs looks more coher-
ent with the multimodal inputs also taking into account the
model’s body pose. Overall, we collect around 7k evalua-
tions, 3.5k for each test, and involving more than 150 users.

D. Additional Results

In this section, we provide additional experimental re-
sults to understand the strengths and limitations of our ap-
proach. Table 8 extends Table 2 of the main paper show-
ing quantitative results on each garment category of Dress

Modalities Dress Code Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 7.61 2.54 30.17 7.22 0.527
✓ ✓ 7.82 2.85 29.93 6.26 0.519

MGD (ours) ✓ ✓ ✓ 7.73 2.82 30.04 6.79 0.458

Modalities VITON-HD Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 12.73 3.59 30.24 8.64 0.643
✓ ✓ 12.40 3.36 30.34 7.53 0.435

MGD (ours) ✓ ✓ ✓ 12.81 3.86 30.75 7.22 0.317

Table 11: Performance analysis on the unpaired setting of
both datasets as input modalities vary.

Code Multimodal. Since each category contains only 1,800
images, the FID score presents a high variance in the re-
sults [1], while the KID metric presents more accurate re-
sults. Nevertheless, our method outperforms all competitors
in all metrics except for the pose metrics in the unpaired
setting. This behavior is due to the imperfect match of the
predicted warped unpaired sketches and the model’s body
shape and pose. In fact, from the analysis of the sketch con-
ditioning steps in the unpaired setting (Table 5 of the main
paper), we can see that the pose distance directly correlates
with the sketch conditioning parameter, while in the paired
one (Table 9) the pose distance metric decreases as the num-
ber of sketch conditioning steps increases. Instead, when
evaluating the results on VITON-HD Multimodal, the pose
distance metric in the unpaired setting decreases (Table 10).
We believe this behavior relates to the size of the worn gar-
ment in this last dataset, which facilitates garment warping.
In fact, VITON-HD features half-body images, while Dress
Code contains full-body target models.

In Table 11, we show the performance of our MGD
model when masking different input modalities. In this
case, we report the results on the unpaired setting of both
datasets. As it can be seen, evaluation metrics measuring
the realism of the generation (i.e. FID and KID) are com-



Modalities Dress Code Multimodal VITON-HD Multimodal

Model Resolution Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

Paired setting
ControlNet [21] 512×384 ✓ ✓ 18.36 9.82 29.00 7.46 0.462 19.08 9.35 30.03 7.72 0.392
MGD (ours) 512×384 ✓ ✓ 6.31 2.33 31.67 5.31 0.405 11.07 3.36 32.27 6.77 0.318

ControlNet [21] 512×384 ✓ ✓ 27.23 19.01 27.07 7.54 0.436 25.44 17.05 28.31 8.16 0.298
MGD (ours) 512×384 ✓ ✓ 5.72 2.15 31.69 4.94 0.373 10.64 3.26 32.31 6.18 0.255

Unpaired setting
ControlNet [21] 512×384 ✓ ✓ 20.66 11.58 27.57 8.15 0.577 21.03 10.34 28.11 8.38 0.534
MGD (ours) 512×384 ✓ ✓ 7.82 2.85 29.93 6.26 0.519 12.40 3.36 30.34 7.53 0.435

ControlNet [21] 512×384 ✓ ✓ 29.61 20.83 25.75 9.74 0.544 27.41 18.66 26.63 9.53 0.416
MGD (ours) 512×384 ✓ ✓ 7.65 2.70 30.21 7.50 0.456 12.65 3.59 30.69 7.49 0.320

Table 12: Performance comparison with ControlNet on the Dress Code Multimodal and VITON-HD Multimodal datasets for
both paired and unpaired settings.

parable among different cases, while the pose distance and
sketch distance metrics correlate in general with the given
input (i.e. with the pose map and the garment sketch, respec-
tively). Moreover, in this case, the warped in-shop garment
not fitting the model’s body shape affects the pose distance
metric for the Dress Code Multimodal dataset.

Finally, in Table 12 we report a comparison with the
concurrent work ControlNet [21] adapted to work with the
Stable Diffusion inpaint denoising network. Following the
original paper, we only condition ControlNet on text plus an
additional modality (i.e. pose or sketch). It is worth noting
that across all configurations, MGD outperforms Control-
Net by a significant margin.

Qualitative results. We also show additional qualitative re-
sults for both datasets. Specifically, in Fig. 14 and Fig. 15,
we compare images generated by our approach and com-
petitors using a resolution of 512 × 384, for Dress Code
Multimodal and VITON-HD Multimodal, respectively. In-
stead, in Fig. 16 and Fig. 17, we report low-resolution qual-
itative comparisons. Fig. 19 shows some qualitative re-
sults varying the sketch conditioning parameter. Increas-
ing the number of sketch conditioning steps leads to images
that better follow the given sketch while slightly reducing
the realism of the generated garments. Finally, we inves-
tigate the conditioning contribution in various time win-
dows in Fig. 10. We perform this experiment by fixing
the sketch conditioning steps to around a third of diffu-
sion steps and varying the starting conditioning timestep
(i.e. tstart = 0, 16, 34). Qualitative results show that start-
ing the sketch conditioning in the central (i.e. tstart = 16,
tend = 34) or final denoising steps (i.e. tstart = 34,
tend = 50) leads the model to generate images that do not
follow the input sketch and present artifacts.

Limitations and failure cases. Fig. 20 shows some fail-
ure cases of the proposed approach. In the first row, the
first two examples show that our model sometimes fails to
generate hands accurately when they occupy a limited area
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Figure 10: Time window conditioned examples on Dress
Code Multimodal. We report qualitative results fixing the
sketch conditioning steps to around a third of diffusion steps
and varying the starting conditioning timestep (i.e. tstart =
0, 16, 34).

within the source image. This behavior is intrinsic in LDMs
family [14] and derives from the high spatial compression
nature of the latent space (8× for each spatial dimension).
Instead, the third example of the first row and the first two
samples of the second row highlight the dependence of our
model performance from the given sketch. When the geo-
metric warping module fails to generate a sketch able to fit
the model’s shape, the generation task fails as well, creating
unwanted artifacts (e.g. a sketch may be smaller than the
model’s body shape as in the third example of the first row,
resulting in an artifact near the model’s left hand).
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Figure 11: Sample images and multimodal data from our newly collected Dress Code Multimodal dataset (fine-grained
textual annotations).
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Figure 12: Sample images and multimodal data from our newly collected Dress Code Multimodal dataset (coarse-grained
textual annotations).
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Figure 13: Sample images and multimodal data from our newly collected VITON-HD Multimodal dataset (coarse-grained
textual annotations).
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Figure 14: Qualitative comparison on Dress Code Multimodal. From left to right: model’s image, input sketch, pose map,
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Figure 15: Qualitative comparison on VITON-HD Multimodal. From left to right: model’s image, input sketch, pose map,
image generated by Stable Diffusion [14], image generated by SDedit [9], image generated by MGD (ours), and noun chunks.
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Figure 16: Qualitative comparison with low-resolution images on Dress Code Multimodal. From left to right: model’s image,
input sketch, pose map, image generated by Stable Diffusion [14], image generated by FICE [11], image generated by MGD
(ours), and noun chunks.
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Figure 17: Qualitative comparison with low-resolution images on VITON-HD Multimodal. From left to right: model’s
image, input sketch, pose map, image generated by Stable Diffusion [14], image generated by FICE [11], image generated
by MGD (ours), and noun chunks.
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Figure 18: Qualitative comparison of images generated by our model on Dress Code Multimodal using different conditioning
modalities. From left to right: model’s image, input sketch, pose map, image generated using only text, image generated using
text and pose map, image generated with all input modalities (i.e. text, pose map, and sketch).
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Figure 19: Qualitative results generated by MGD increasing the sketch conditioning steps.
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