Supplement for “Uncertainty-aware State Space Transformer for
Egocentric 3D Hand Trajectory Forecasting”

Wentao Bao '*, Lele Chen?, Libing Zeng?, Zhong Li?, Yi Xu?, Junsong Yuan*, Yu Kong!
'Michigan State University, 2OPPO US Research Center,
3Texas A&M University, “University at Buffalo

{baowenta, yukong}@msu.edu, libingzeng@Rtamu.edu,

{lele.chen, zhong.li, yi.xu}@oppo.com, jsyuan@buffalo.edu

In this document, we provide more details of the data
collection and annotation, model implementation, evalua-
tion results, and visualizations.

A. Details of the Datasets
A.l. Annotation Workflow

Following the similar pipeline in the EgoPAT3D [&],
we propose to obtain the 3D hand trajectory annotations
based on egocentric RGB-D recordings. In the following
paragraphs, we elaborate on each processing step based on
RGB-D data from the EgoPAT3D [8] and H20 [6].

Clip Division The EgoPAT3D dataset consists of RGB-
D data of hand-object manipulation in 14 indoor scenes.
We leverage the provided manual clip divisions and the
hand landmarks to obtain more accurate trajectory divi-
sions. Specifically, let (s,,, e,,) denote the start and end of
a manually annotated trajectory, and {5, . .., t. } denote the
indices of detected 3D hand landmarks, our trajectory start
and end are determined by max(s,,,ts) and min(e,,, t.),
respectively. This technique could mitigate the ambiguity
of trajectory start and end. Then, we use them to obtain the
RGB video clips from the raw recordings. The H20 dataset
contains 184 long videos and each video is annotated with
3D poses of the left and right hand as well as the binary va-
lidity flag. The trajectory start and end are determined by
the validity flag.

2D Trajectory For each clip, we found the hand trajec-
tory is not stable if only using the centers of frame-wise
hand landmarks as trajectory points. Therefore, for the
EgoPAT3D dataset, we propose to leverage the optical flow
model RAFT [11] to warp the hand landmark center as the
2D hand trajectory. Specifically, we apply the RAFT to the
forward pass starting from the first 2D location p; of the
hand and backward pass starting from the last location pp

of the hand, resulting in the forward trajectory {pif)}thl

and backward trajectory {pﬁb)}le. Then, for each frame
t, the ultimate 2D location is determined by a temporally
weighted sum p; = wtpgf)y (1 —wt)pgb) where the weight
wy is temporally decreasing from 1.0 to a constant ¢ by
wy =c+ (1 —¢)/(1+exp(t —T/2)). In practice, we set ¢
to 0.3. The rationale of weighing is to mitigate the error ac-
cumulation from the RAFT model. It assigns more weight
to the earlier locations by forward flow and more weight
to the latter locations by backward flow, with the margin c
between the two passes.

Local 3D Trajectory With the 2D hand trajectory, it is
straightforward to obtain the 3D hand trajectory by fetch-
ing the depth of each trajectory point from the RGB-D
clips. However, we noticed that due to the fast motion
of the hand and camera, the recorded depth channels in
those frames could be missing, i.e., depth values are ze-
ros (see the red dots in Fig. 2). To obtain high-quality 3D
hand trajectory annotations, we initially attempted to use
the state-of-the-art depth estimation model NewCRFs [13]
to estimate the missing depths from RGB frames. How-
ever, it cannot work well due to the camera motion that re-
sults in dynamic scenes in RGB frames. Instead, we found
that a simple least-square fitting (LSF) by combining the
third-order polynomial and sine functions, i.e., z,(t) =
a1t® + aot? + ast + ay + assin(agt), could repair the
missing depth. For both EgoPAT3D and H20, we apply the
LSF to repair 3D hand trajectory depth. To enable success-
ful depth fitting, we use at least 10 valid trajectory points
to fit a multinomial model on each 3D hand trajectory that
contains invalid depths.

Global 3D Trajectory Note that the 3D trajectory points
from the previous step are defined in the local camera coor-
dinate system. When the camera is moving in an egocentric
view, using RGB videos to predict the local 3D trajectory

Figure 1: Dataset Examples. For each video (in a row), the global 3D trajectory and the projected 2D trajectory are
visualized, where the past and future trajectory segments are in red and blue, respectively. Zoom in for more details.

will be ambiguous. In other words, distinct visual contents
are forced to learn to predict numerically similar coordi-
nates. To eliminate the ambiguity, similar to EgoPAT3D [§],
we propose to transform the 3D trajectory targets into a
global world coordinate system with reference to the first
frame. This is a visual odometry procedure that computes
the 3D homogeneous transformation M; € R**4 between
camera poses at two successive frames ¢ — 1 and ¢. Eventu-
ally, a local 3D trajectory point p' is transformed as a global
3D trajectory point p by the accumulative matrix product
p) = HZ:1 M;.p!. In experiments, we use the global 3D
trajectory {pJ}Z_; as the ground truth for model training,
evaluation, and visualization by default. Fig. 1 shows three
video examples with global 3D trajectory annotations.

A.2. Camera Intrinsics and Poses

For both the EgoPAT3D and H2O, the camera intrinsics
are fixed across all samples. Table |1 summarizes the camera
intrinsics of the dataset we used in this paper. Note that the
intrinsics are scaled with the factor 0.25 when we down-
scale the RGB videos to the input resolution. For camera
poses of EgoPAT3D, we use Open3D [15] library to per-
form visual odometry' by using adjacent RGB-D pairs so
that the camera motion is obtained. The camera poses of
H20 dataset are given for each video frame.

B. Additional Implementation Details

Data Structure To enable efficient parallel training with
batches of data input that contain videos of varying lengths,

n practice, we followed the EgoPAT3D to use the Open3D API (RGB-
DOdometryJacobianFromHybridTerm) to compute the 3D camera motion.

Table 1: Summary of camera intrinsics

resolution H =2160, W = 3840
EgoPAT3D | focal length fz =1808.203, f, = 1807.946
principle point | 0, = 1942.287, o, = 1123.822

resolution
H20 focal length
principle point

H =720, W =1280
fe =636.659, f, =636.252
0 = 635.284, o, = 366.874

we adopt the mask mechanism in our implementation.
Specifically, we set the maximum length of each video to 40
and 64 for EgoPAT3D and H2O, respectively. The lengths
of the past observation and future frames are determined by
the actual video length. For instance, when the observation
ratio is set to 0.6, a sample with 35 frames in total has 21
observed frames, 14 unobserved frames, and 5 zero-padded
frames. Since the visual background of RGB videos is rel-
atively clean, we resize videos into the size of 64 x 64 in
training and inference.

Model Structure For the ResNet-18 backbone, we re-
place the global pooling layer after the last residual block
with torch. flatten, in order to preserve as much vi-
sual contextual information as possible. When the visual
prompt tuning (VPT) is utilized, the width of the padded
learnable pixels is set to 5 as suggested by [4], result-
ing in 1380% additional parameters to learn. For the ViT
backbone, we adopt the vit /b1l6-224 architecture pro-
vided by TIMM, which is pre-trained on the ImageNet-21K

2For 64 x 64 input, the number of learnable parameters in prompt em-
beddings is computed by (64 + 5 x 2)2? — 642 = 1380.

0.6

° 6] o
ol 0.6 °ﬁ...... 0..'.. ‘.
() () [}
€ ‘. € K -~ .'0. = /ﬁ " o
o00e, '“.00..
z ® ..O' Z 0.4 ¢ g’ 04 %
_‘5_0.4 . M TPrwevT Lid Ll = -_g_
S 3 5
E 2 E
Go21 o Repair by NewCRFs &°7 o Repair by NewCRFs © **1 e Repair by NewCRFs
e Repair by LSF e Repair by LSF e Repair by LSF
¢ RGB-D Camera e RGB-D Camera e RGB-D Camera
0.0 y T T 0.0 T T T 0.0 T y
10 20 30 0 10 20 30 40 20 40
frame id frame id frame id
(a) Bathroom Cabinet (b) Bathroom Counter (c) Bin
o0) L]
oo’...... ‘e ® .00‘°.. .
°® ¢ ° 0.4 ° -..... °
—~ 04 ® s e — ' ° °l o — 0.
E ¢ E o ® .’o:".. oe E °
~ ® ~ *® ~ .
- c 03 . - ° . .00.
45_ 45_ ° 45_ “00.. °® © o*
() ° Q . Q 04 r .¢
© © © ° o o 0)
-g o2 -8 " -g 0a® ..'000“’.
o e Repair by NewCRFs * o o Repair by NewCRFs e, o Repair by NewCRFs
e Repair by LSF 0.1 e Repair by LSF e Repair by LSF
e RGB-D Camera e RGB-D Camera e RGB-D Camera
0.0 T T T a—aspaa 0.0 +asa T T T 0.0 T A———asasa T
5 10 15 20] 10 20 30 10 20 30
frame id frame id frame id
(d) Kitchen Cupboard (e) Microwave (f) Nightstand

Figure 2: Examples of comparison between the Least Square Fitting (LSF) and the depth estimation model NewCRFs [

] for repairing

the noisy depth values from EgoPAT3D RGB-D data. It’s clear that on this video dataset with dynamic background, a simple LSF with a
multinomial model could achieve a much better depth repairing effect than the state-of-the-art deep learning model NewCRFs.

dataset. For either ResNet-18 or ViT-based frame encoder
fv, the output feature is embedded by a two-layer MLP with
512 and 256 hidden units. For the trajectory encoder f7, we
use a two-layer MLP with 128 and 256 hidden units. For
both visual and trajectory transformer encoders, we utilize
the standard transformer encoder architecture, which con-
sists of 6 multi-head self-attention blocks where the number
of heads is 8 and the MLP ratio is 4. For the decoder, we im-
plement the three prediction branches, i.e., future trajectory
prediction, uncertainty prediction, and velocity prediction,
using three MLP heads, each of which consists of 128 and 3
hidden units. For trajectory and velocity prediction outputs,
we use tanh activation, while for the uncertainty output,
we use softplus activation. Besides, for the velocity pre-
diction, layer normalization is applied to each hidden layer.

Learning and Inference In training, we set the § param-
eter of Huber loss to 1e — 5, and set the coefficient of
the velocity-based warping loss to 0.1. For the cosine learn-

ing rate scheduler, we adopt warm-up training in the first 10
epochs. For 500 training epochs in total, our model training
can be completed within 5 hours on a single RTX A6000
GPU. In testing, we evaluate the predicted 3D trajectory in
the global coordinate system by referring to the camera at
the first time step, while visualizing the 2D trajectory by
first projecting the global 3D trajectory into the local 3D
trajectory, and then projecting the local 3D coordinates onto
a video frame as 2D pixel coordinates.

C. Additional Evaluation Results

Full results on H20-DT We additionally provide full
experimental results by training models on H20-DT and
H20-DT w/o depth repair in Table 2. It shows that our
USST method could still achieve the best performance us-
ing training data with inaccurate trajectory annotations.

Table 2: Results of models training on H20-DT dataset. We report all results of models trained by annotations from H20-DT (left) and
its version without depth repair (right), and tested on the accurate H20-PT test set. All models are built with ResNet-18 backbone. Best

and secondary results are viewed in bold black and blue colors, respectively.

H20-DT H20O-DT (w/o depth repair)
Models ADE ({) FDE (}) ADE () FDE ({)

3Dispy 2D@ipy 2Depy | 3Dispy 2D@py 2Depy | 3D@spy 2D@ipy 2Dep) | 3Dspy 2D@py 2Dep)
DKEF [5] 0.236 0.235 0.269 0.138 0.030 0.020 0.199 0.186 0.208 0.181 0.153 0.187
RVAE [7] 0.125 0.209 0.094 0.057 0.082 0.047 0.051 0.060 0.059 0.058 0.071 0.059
DSAE [12] 0.081 0.113 0.078 0.043 0.059 0.040 0.072 0.068 0.063 0.067 0.047 0.077
STORN [1] 0.091 0.100 0.070 0.245 0.078 0.040 0.067 0.061 0.054 0.135 0.097 0.121
VRNN [2] 0.080 0.092 0.068 0.042 0.035 0.039 0.065 0.063 0.054 0.133 0.087 0.087
SRNN [3] 0.087 0.097 0.076 0.124 0.072 0.045 0.055 0.059 0.061 0.083 0.089 0.135
AGF [14] 0.108 0.065 0.080 0.171 0.061 0.214 0.099 0.075 0.065 0.186 0.044 0.056
OCT [9] 0.360 0.473 0.350 0.348 0.362 0.520 0.381 0.519 0.403 0.403 0.521 0.505
ProTran [10] | 0.080 0.082 0.099 0.023 0.031 0.107 0.070 0.093 0.064 0.162 0.146 0.041
USST 0.033 0.041 0.041 0.052 0.050 0.041 0.032 0.041 0.040 0.053 0.041 0.041

Table 3: FDE results of 2D hand trajectory forecasting. Com-
pared models are built with ResNet-18 (R18) backbone. Best and
secondary results are in bold black and blue colors, respectively.

Model Seen ({) Unseen ({)
DKEF [5] 0.150 0.239
RVAE [7] 0.152 0.201
DSAE [12] 0.144 0.233
STORN [1] 0.145 0.266
VRNN [2] 0.155 0.237
SRNN [3] 0.157 0.198
OCT [9] 0.090 0.147
ProTran [10] 0.134 0.049
USST (R18) 0.075 0.107
USST (ViT) 0.066 0.114

175 70
150 E speed (ms/v) 60
125 HEm # params (M) (50

32.2

75 30

50 20

25 10
0 0

AGF
Figure 3: Inference speed in milliseconds/video (ms/v) and the
number of model parameters in million (M), tested on a single
RTX 6000Ada GPU with input video size 64 x 64 x 64.

OCT ProTran USST

FDE results on EgoPAT3D-DT We additionally provide
the Final Displacement Error (FDE) results for 2D hand tra-
jectory forecasting as shown in Table 3. Our method could
achieve the best performance on the seen test data while be-
ing competitive on the unseen test data. Besides, ProTran
shows the best result on the unseen data, which could be

attributed to its extra trajectory supervision from the full
observation of the latent Gaussian distributions.

Inference speed In Fig. 3, we compared with the
Transformer-based methods. It shows the USST achieves
competitive speed to ProTran while comparable model size
to AGF. With certain improvements, our method could po-
tentially benefit the rendering latency in AR/VR.

D. Additional Demos

In addition to the visualizations of the main paper, we ad-
ditionally provide some examples as shown in Fig. 4 and 5.
They show that our method could accurately predict the 3D
and 2D hand trajectories in both seen and unseen scenarios.

References

[1] Justin Bayer and Christian Osendorfer. Learning stochastic
recurrent networks. In NeurlPS Workshop, 2014. 4

[2] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. A recurrent
latent variable model for sequential data. In NeurIPS, 2015.
4

[3] Marco Fraccaro, Sgren Kaae Sgnderby, Ulrich Paquet, and
Ole Winther. Sequential neural models with stochastic lay-
ers. In NeurIPS, 2016. 4

[4] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 2

[5] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep
kalman filters. arXiv preprint arXiv:1511.05121, 2015. 4

[6] Taein Kwon, Bugra Tekin, Jan Stiihmer, Federica Bogo, and
Marc Pollefeys. H20: Two hands manipulating objects for
first person interaction recognition. In /ICCV, 2021. 1

Bathroom Cabinet (seen) Microwave (seen) Small Bins (seen)

Bathroom Counter (seen)

Pantry Shelf (seen)

Figure 4: Visualization on Seen data. For each scene (in a row), we show two examples of the 2D and 3D trajectories on the first frame.
The blue, green, and red trajectory points represent the past observed, future ground truth, and future predictions, respectively.

‘Wooden Table (unseen) StoveTop (unseen)

Windowsill AC (unseen)

014 045

Figure 5: Visualization on Unseen data. For each scene (in a row), we show two examples of the 2D and 3D trajectories on the first
frame. The blue, green, and red trajectory points represent the past observed, future ground truth, and future predictions, respectively.

(7]

(8]

(9]

(10]

(1]

Simon Leglaive, Xavier Alameda-Pineda, Laurent Girin, and
Radu Horaud. A recurrent variational autoencoder for speech
enhancement. In /ICASSP, 2020. 4

Yiming Li, Ziang Cao, Andrew Liang, Benjamin Liang, Lu-
oyao Chen, Hang Zhao, and Chen Feng. Egocentric predic-
tion of action target in 3d. In CVPR, 2022. 1, 2

Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xi-
aolong Wang. Joint hand motion and interaction hotspots
prediction from egocentric videos. In CVPR, 2022. 4

Binh Tang and David S Matteson. Probabilistic transformer
for time series analysis. In NeurIPS, 2021. 4

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

[12]

(13]

(14]

[15]

transforms for optical flow. In ECCV, 2020. 1

Li Yingzhen and Stephan Mandt. Disentangled sequential
autoencoder. In ICML, 2018. 4

Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and

Ping Tan. NeW CRFs: Neural window fully-connected crfs
for monocular depth estimation. In CVPR, 2022. 1,3

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. In /CCV, 2021. 4

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2

