
Appendix

A. Additional similarity matrices

In Figure 10, we provide daily similarity matrices over
one month. We observe that the content for weekends and
weekdays might differ for both datasets. Note that the num-
ber of points per day is equalized to avoid artifacts due to
the number of vectors per day.

Figure 9 presents weekly similarity matrices over one
year. We observe the similar content drift behavior to Fig-
ure 4, but no discernable weekly correlations.

B. Balance of K-means clusters

The IVF-based indexing relies on a vector quantizer to
partition the vectors into clusters. Therefore, we investigate
how content drift affects K-means clusters. We select months
i and j and train K-means (K=16384) on Φi. Then, we
assign the vectors from Φj to the trained centroids, count
the number of points within each cluster and normalize them
by |Φj | = M . This yields a discrete distribution pi,j =
(p1, . . . , pK) We use the entropy of H(pi,j) to measure the
balancedness of the K-means clusters. For balanced clusters
the entropy is log2 K = 14 and for a hopelessly unbalanced
clustering where all vectors are assigned to one cluster it
is 0. Figure 8 shows the matrix of entropies for all pairs
(i, j). The further away from the diagonal, the lower the
entropy. This means that the K-means clustering becomes
progressively less balanced when month i is more distant
from month j. In addition, for YFCC, the clusters are more
imbalanced for opposite seasons.

This means that the direct distance measurements in fig-
ure 4 translate to sub-optimal clustering as well. For all
datasets, the content drift takes place and has different na-
ture and behavior. The changing distribution also affects
K-means clusters and hence might lead to the noticeable
degradation of the most prevalent indexing schemes at scale.

C. Robustness of indexing structures for differ-
ent window sizes

In our experiments, we consider the window size m=3
months which is motivated by the reasonable practical sce-
nario. However, one can consider different m settings.

In Table 5, we provide the robustness results for IVF
indexes built upon uncompressed embeddings for various
window sizes m in months. We select the coarse quantizer
sizes according to the number of datapoints within the index.
We observe that the performance degradation does not differ
much, even for large m.

VideoAds YFCC
Oct 2020 → Sep 2022 Jan 2007 → Dec 2013

Figure 8. Balancedness of K-means clusters over time. The start-
ing and ending date for the periods are indicated on top. For both
datasets, the clusters become more imbalanced. YFCC also demon-
strates the seasonal behavior — the clusters are more balanced for
the same seasons than for the opposite ones. Note that we use stride
3 months for the YFCC dataset for better visualization.
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Figure 9. Pairwise similarity matrices between the embeddings
over one year subdivided in one week. Blue and yellow correspond
to low and high similarities, respectively. There is still the seasonal
pattern for YFCC and content drift over time for VideoAds. Both
datasets do not have any clearly visible weekly correlations.

D. DEDRIFT-Lazy with multiple training itera-
tions

DEDRIFT-Lazy can be considered as a warm-started k-
means to adapt to the new data distribution. Therefore, we
investigate the impact of the number of centroid update steps
L. For a normal k-means clustering the number of iterations
strikes a tradeoff between speed and the quality of the clus-
tering. However, Table 6 demonstrates that a single centroid
update provides the highest recall. Moreover, the number
of training iterations L>2 leads to noticeable degradation.
This is because DEDRIFT-Lazy do not reassign the points
after the centroid update and hence more iterations imply
that the centroids move far away from the ones that the “old”
vectors were assigned to. Therefore, it is both more efficient
and more accurate to do a single centroid update step.
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Figure 10. Pairwise similarity matrices between the embeddings over one month subdivided in days for a few months selected at random.
Blue and yellow correspond to low and high similarities, respectively. Red dates represent weekends. Both datasets have noticeable weekday
vs weekend pattern.

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method m ID OOD ID OOD ID OOD ID OOD

IVF8192 1 0.873 0.767 0.934 0.867 0.977 0.949 0.990 0.979
IVF16384 3 0.842 0.732 0.914 0.845 0.966 0.938 0.985 0.973
IVF32768 6 0.839 0.738 0.896 0.832 0.956 0.930 0.979 0.967
IVF65536 12 0.821 0.743 0.896 0.850 0.955 0.937 0.978 0.969

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method m ID OOD ID OOD ID OOD ID OOD

IVF2048 1 0.876 0.826 0.938 0.912 0.980 0.970 0.992 0.989
IVF4096 3 0.796 0.744 0.892 0.858 0.960 0.945 0.983 0.977
IVF8192 6 0.768 0.713 0.872 0.839 0.943 0.928 0.974 0.967

IVF16384 12 0.758 0.703 0.859 0.823 0.939 0.924 0.973 0.964

Table 5. Relative performance of IVF indexing structures for in-
domain (ID) and out-of-domain (OOD) search on VideoAds (top)
and YFCC (bottom) for different window sizes m in months. The
search accuracy measure is 10-recall@10. The drops in perfor-
mance are essentially similar for various m settings.

E. Index update costs for IVF with PQ com-
pressed embeddings on YFCC

Table 7 provides the update costs for the IVF index with
OPQ encoding. On both datasets, DEDRIFT demonstrates
efficiency gains from 3× to 10×.

Note that the gains are smaller than for IVF operating on
uncompressed embeddings. This is because, in this experi-
ment, the index on the PQ compressed vectors uses original

data on the disk and loads it into RAM at each update step.
This is an implementation choice, that in addition makes the
timings dependent on the performance of the external stor-
age. Specifically, in our case, the data loading takes ∼1.7s
and ∼8s for YFCC and VideoAds, respectively.

F. DEDRIFT on IVF with PQ compressed em-
beddings on YFCC

Table 8 presents the results of the IVF index with OPQ en-
coding on the YFCC dataset. The performance drop caused
by the content drift is smaller compared to VideoAds. Nev-
ertheless, DEDRIFT almost closes the gap between no rein-
dexing (None) and full index reconstruction (Full).

G. Runtimes for different budgets
In this section, we report measured search times in mil-

liseconds for different DCS budgets on each dataset. We
average the runtimes over 20 independent runs. All runs are
performed with 30 threads on an Intel Xeon Gold 6230R
CPU @ 2.10GHz.

H. Running DEDRIFT on reconstructed vectors
In Table 9, we present the index update method perfor-

mance if the cetroids are updated based on either original



YFCC, IVF4096,Flat, Jun 2013

Budget (DCS) 6000 12000 20000 30000 60000

L=0 0.746 0.858 0.913 0.943 0.975
L=1 0.795 0.889 0.930 0.954 0.979
L=2 0.795 0.888 0.931 0.954 0.979
L=3 0.791 0.884 0.928 0.952 0.978
L=5 0.785 0.879 0.924 0.949 0.976
L=10 0.777 0.871 0.919 0.945 0.973

VideoAds, IVF16384,Flat, Jun 2022

Budget (DCS) 6000 12000 20000 30000 60000

L=0 0.719 0.832 0.891 0.923 0.961
L=1 0.780 0.875 0.920 0.946 0.971
L=2 0.780 0.869 0.913 0.939 0.966
L=3 0.773 0.863 0.909 0.934 0.962
L=5 0.769 0.860 0.904 0.930 0.958
L=10 0.753 0.844 0.893 0.920 0.951

Table 6. DEDRIFT-Lazy performance for the different number
of centroid update iterations L. L=1 provides the highest recall
values. Note that L=1 is also the most efficient option.

YFCC, IVF4096,OPQ32

Method Split Lazy Hybrid Full
Update costs (s) 2.1 8.1 10.4 29.8

VideoAds, IVF16384,OPQ32

Method Split Lazy Hybrid Full
Update costs (s) 10.8 24.1 33.2 430.8

Table 7. Index update costs for IVF indexes with OPQ encoding.
DEDRIFT variants are much more efficient than full index recon-
struction (Full).

IVF4096,OPQ32, direct encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.414 0.444 0.455 0.461 0.465
Split 0.423 0.448 0.457 0.461 0.465
Lazy 0.432 0.452 0.459 0.463 0.466

Hybrid 0.432 0.453 0.460 0.464 0.466
Full 0.435 0.454 0.460 0.464 0.467

IVF4096,OPQ32, residual encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.453 0.481 0.492 0.497 0.501
Split 0.463 0.487 0.495 0.500 0.503
Lazy 0.474 0.495 0.504 0.507 0.510

Hybrid 0.478 0.496 0.504 0.507 0.510
Full 0.480 0.500 0.508 0.511 0.514

Table 8. Comparison of the index update methods on the YFCC
dataset for IVF4096,OPQ32.

embeddings or reconstructed ones from the PQ encodings.
DEDRIFT does not degrade the recall values much while the
full index reconstruction is noticeably affected.

YFCC, IVF4096,OPQ32, direct encoding

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method Orig Recon Orig Recon Orig Recon Orig Recon

Split 0.423 0.423 0.448 0.447 0.461 0.461 0.465 0.466
Lazy 0.432 0.430 0.452 0.452 0.463 0.463 0.466 0.466
Full 0.435 0.425 0.454 0.448 0.464 0.462 0.467 0.465

VideoAds, IVF16384,OPQ32, direct encoding

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method Orig Recon Orig Recon Orig Recon Orig Recon

Split 0.520 0.514 0.556 0.552 0.579 0.578 0.587 0.586
Lazy 0.530 0.528 0.563 0.562 0.583 0.582 0.588 0.588
Full 0.548 0.527 0.573 0.559 0.588 0.580 0.593 0.587

Table 9. DEDRIFT and full index reconstruction performance (Full)
when the centroids are updated using original embeddings (Orig)
and reconstructed ones from PQ encodings (Recon).

Budget (DCS) 6000 12000 20000 30000 60000

IVF16384, Flat 6.12 12.05 18.93 27.14 53.35
IVF16384, OPQ32 1.08 1.23 1.29 1.40 1.96

Table 10. Runtimes (ms per query) for different budgets on
VideoAds.

Budget (DCS) 6000 12000 20000 30000 60000

IVF4096, Flat 4.26 7.72 12.61 18.19 35.44
IVF4096, OPQ32 0.43 0.54 0.72 0.93 1.73

Table 11. Runtimes (ms per query) for different budgets on YFCC.

I. Evolving k-means evaluation
In this experiment, we evaluate evolving k-means [9]

during the full index reconstruction. We consider different
evolving k-means configurations proposed in the paper and
provide the results in Table 12. Evolving k-means slightly
improves the results on both datasets.

J. Image credits
J.1. Attributions for Figure 2

From top to bottom and left to right, the images are from
Yahoo Flickr users:
2007-07: Imagine24, fsxz, Tuldas, CAPow!, Anduze trav-
eller, Barnkat.
2008-10: BEYOND BAROQUE, armadillo444, Anadem
Chung, nikoretro, Jon Delorey, Gone-Walkabout.
2009-12: Spider58, thehoneybunny, Communicore82, Oli
Dunkley, HarshLight, Yelp.com.
2010-02: cruz fr, Bemep, Dawn - Pink Chick, ljw7189,
john.meagher, ShashiBellamkonda.



Budget (DCS) 6000 12000 20000 30000 60000

Full naive 0.804 0.895 0.938 0.959 0.981
Full [9] PSKV 0.798 0.892 0.935 0.958 0.982

Full [9] FSKV p=0.5 0.804 0.895 0.938 0.960 0.983
Full [9] FSKV p=0.8 0.807 0.896 0.939 0.961 0.983

Budget (DCS) 6000 12000 20000 30000 60000

Full naive 0.815 0.892 0.930 0.952 0.975
Full [9] PSKV 0.815 0.894 0.934 0.956 0.980

Full [9] FSKV p=0.5 0.818 0.896 0.935 0.956 0.980
Full [9] FSKV p=0.8 0.820 0.897 0.935 0.957 0.981

Table 12. Comparison with the evolving k-means method [9] on the
YFCC (Top) and VideoAds (Bottom) datasets. Evolving k-means
slightly improves the recall rates for the full index reconstruction.

2011-06: robinmyerscough, telomi, richmiller.photography,
hergan family, cus73, librarywebchic.


