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This document provides detailed information on the fol-
lowing topics: (A) Short-form video setup for the baseline
models on MAD [8] dataset: Zero-shot CLIP [8], VLG-
Net [9], and Moment-DETR [4]. (B) Comprehensive results
using Moment-DETR [4] and VSL-Net [11] in Ego4D [2].
(C) In-depth results of each ablation study presented in the
main paper for the Guidance Model. Lastly, (D) Evaluating
the inference time of the Guidance Model.

A. Short-form video setup
This section presents additional results for the short-

form moment localization setup. To this end, we use the
baseline grounding models reported in the main paper and
evaluate them using several short-form video setups, fol-
lowing [8]. To be more specific, we first split a single (long)
movie into non-overlapping windows (short videos). Then,
we assign to each of these windows the ground-truth anno-
tation with the highest temporal overlap. We evaluate five
short-form video setups using 30, 60, 120, 180, and 600
second windows. Table 1 showcases the performance of the
three baseline models in the (30 seconds) short-form video
setup. Moment-DETR [4] achieves the highest scores for all
metrics. This result indicates that the model is remarkably
good for moment localization in short videos, however, it

Model IoU=0.1 IoU=0.3 IoU=0.5

R@1 R@5 R@1 R@5 R@1 R@5

Zero-shot CLIP [8] 37.83 69.53 17.01 47.63 6.75 25.81
VLG-Net [9] 44.70 73.99 23.91 61.81 17.59 44.30
Moment-DETR [4] 46.30 93.17 34.00 68.88 20.12 44.48

Table 1: Short-form video setup: 30 seconds. The table shows
the performance of the three selected grounding baseline models
in a short-video setup. In this setting, videos are chunked into 30-
second, non-overlapping windows. Moment-DETR achieves the
best performance in all the metrics for this setup, however, it falls
behind zero-shot CLIP and VLG-Net in the long-form video setup
(see Section 4 of the main paper).

utterly fails to ground moments in video setups with much
longer windows (see Table 1 in the main paper).
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(a) Baseline models performance in short-form video setup at
R@1-IoU=0.5.
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(b) Baseline models performance in short-form video setup at
R@5-IoU=0.5.

Figure 1: Performance trend across different short-
form video setups. Figure (a) illustrates the baseline
performance in the short-form video setup at R@1 using
tIoU=0.5. In contrast, Figure (b) displays the performance
at R@5 with tIoU=0.5. The figure also demonstrates how
the performance of all baseline models changes as the evalu-
ation window lengthens. Notably, we observe that Moment-
DETR is the most affected by long window sizes exceeding
120 seconds.

Figure 1 presents the performance of the three baselines



Model IoU=0.1 IoU=0.3 IoU=0.5

R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

Moment-DETR [4] 12.87 37.35 41.32 42.93 − 5.21 17.23 20.73 21.14 − 2.09 4.47 9.50 9.94 −
VSL-Net [11, 5] 16.52 26.59 32.52 47.47 54.16 10.82 18.87 23.21 33.94 40.40 6.81 13.45 17.09 26.87 31.80

†Moment-DETR [4] 13.47 39.55 43.10 44.63 − 5.83 18.87 21.14 22.41 − 2.53 8.00 10.02 11.10 −
†VSL-Net [11, 5] 17.11 31.85 42.13 66.99 67.20 11.25 23.95 30.25 53.99 54.20 7.20 16.37 27.55 42.80 43.30

Table 2: Benchmarking of grounding methods on the Ego4D dataset. We present four models:Moment-DETR [4] and VSL-Net [11, 5]
in rows 1 and 2, respectively, without Guidance Model. Rows 3 and 4 demonstrate the impact of our Guidance Model on Moment-DETR’s
performance and VSL-Net’s performance. To denote the utilization of the Guidance Model, we use the symbol †. It’s important to note
that these results were obtained using the best Guidance Model under a query-dependent setup.

in the five short-form video grounding setups. Moment-
DETR [4] has the best performance when grounding mo-
ments on 30 second windows and achieves comparable per-
formance to VLG-Net [9] in the other short setups (i.e., 30,
60, 120 seconds). However, the performance gap between
Moment-DETR and VLG-Net starts to grow for window
lengths greater than 120 seconds. Furthermore, Moment-
DETR is better than zero-shot CLIP in all short-form video
setups except for the one with a 600 second window length,
where Moment-DETR exhibits the worst performance. In
any case, we must note that all models exhibit a signifi-
cant drop in performance when attempting to process longer
videos.

Takeaways: (i) Moment-DETR works well with short-
form videos but fails for videos longer than 120 seconds,
(ii) current state-of-the-art models cannot address the video
grounding task in the long-form video setting, and (iii) us-
ing the Guidance Model along with Moment-DETR can
boost the latter’s performance allowing it to compete with
state-of-the-art models on the MAD Dataset.

B. Ego4D Results

We also evaluated the effectiveness of the Guidance
Model on the Ego4D [2] validation dataset. In Table 2, we
present the performance of Moment-DETR [4] and VSL-
Net [11, 5] and the boost in performance for the same base-
line using the best configuration of our Guidance Model. By
reporting Recall@K with IoU=θ, for K∈{1, 5, 10, 50, 100}
and θ∈{0.1, 0.3, 0.5}, instead of mR@K, we are able to
provide more detailed results. This allows us to obtain a
more fine-grained understanding of the performance of the
model and its ability to ground moments accurately by us-
ing natural language queries.

Generally speaking, VSL-Net with the Guidance model
performs the best in most of the metrics. For instance,
R@1-IoU=0.5 increases from 6.81 to 7.20, for R@5-
IoU=0.3 increases from 18.87 to 23.95 and R@10-IoU=0.1
increases from 32.52 to 42.13. In contrast, Moment-
DETR demonstrated notable performance enhancements,
illustrated by a significant rise in R@5-IoU scores. Specifi-

cally, at the IoU threshold of 0.1, the metric increased from
26.59 to an impressive 39.55, while at the more stringent
threshold of 0.5, it improved from 4.47 to 8.00.

Takeaway: The efficacy of the Guidance Model in
enhancing the performance of the base grounding model
demonstrates its versatility across datasets and its compati-
bility with a variety of vision-language grounding models.

C. Ablation Study
We focused our ablation studies on two key factors: (i)

selecting the modalities (visual and/or audio), (ii) compar-
ing query-agnostic versus query-dependent guidance per-
formance using the MAD [8] dataset. Additionally, we
extensively investigated actionless moments, which distin-
guishes our implementation from the temporal proposals
method [1, 12, 10, 3, 6].

C.1. Modality Fusion in Guidance Model

As shown in Table 5, the Guidance Model can improve
the baseline results, especially when combining all modal-
ities (audio, video, and text). Instead of using mR@K
as reported in Table 3 of the main paper, here we re-
port Recall@K with IoU=θ, for K∈{1, 5, 10, 50, 100} and
θ∈{0.1, 0.3, 0.5}, enabling us to carry out a more fine-
grained analysis. For example, when leveraging all three
modalities, the performance of Zero-shot CLIP grows from
6.65% to 9.05% for R@1-IoU=0.1 and 5.31% to 7.14% for
R@5-IoU=0.5. VLG-Net [9] also achieves better perfor-
mance when using either two or three modalities. For ex-
ample, R@1-IoU=0.3 grows from 2.56% to 4.01% under
the best configuration. On the other hand, the grounding
model that is the most benefited by the Guidance Model
is Moment-DETR [4]. As discussed in the previous sec-
tion, this model performs poorly on the grounding task with
long-form videos; however, by combining it with the Guid-
ance Model, it can reach a performance that is competitive
with state-of-the-art approaches. For instance, Moment-
DETR [4] beats zero-shot CLIP [8] in the R@1-IoU=0.5
metric for the best configuration: the former achieves



Model IoU=0.1 IoU=0.3 IoU=0.5

Query R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

Zero-shot CLIP [8]
✗ 6.65 14.80 19.79 36.30 45.59 3.19 9.88 13.84 27.47 35.33 1.35 5.31 8.03 18.06 23.93
AG 6.84 15.19 20.28 37.88 45.80 3.89 9.93 15.22 27.80 36.60 1.41 5.49 9.29 17.44 24.12
DE 9.05 18.00 22.76 37.24 44.37 4.52 12.60 16.83 30.13 37.02 2.01 7.14 10.65 21.75 27.76

VLG-Net [9]
✗ 3.43 11.32 17.19 37.80 48.63 2.56 8.92 13.92 32.38 42.34 1.49 5.54 9.01 22.93 31.34
AG 3.89 14.31 18.69 39.37 49.87 2.82 9.30 15.24 35.22 44.19 1.70 7.12 9.87 24.00 34.16
DE 5.37 15.52 22.37 42.58 52.72 4.01 12.56 18.58 37.33 46.44 2.31 8.16 12.57 28.14 36.46

Moment-DETR [4]
✗ 0.28 1.44 2.62 10.41 18.21 0.20 1.07 1.87 7.61 13.18 0.12 0.62 1.05 4.47 7.93
AG 0.65 2.11 4.54 18.44 32.34 0.59 1.78 2.83 14.22 22.97 0.36 1.02 1.45 8.32 12.54
DE 4.84 15.34 22.80 46.01 57.06 3.69 11.95 17.99 37.10 46.19 2.17 7.25 10.93 22.62 28.09

Table 3: Describable windows (full metrics). In this table, we report Recall@K on the validation partition of MAD for
the baseline models under three settings: without any guidance (rows 1, 4, and 7), with query agnostic guidance (AG), and
with query dependent guidance (DE). All three baselines benefit the most from using query-dependent guidance, and modest
performance improvement by query-agnostic setup. Our findings suggest that the query-dependent approach yields superior
performance despite its high computational cost. However, adopting a query-agnostic setup can also enhance performance at
a lower computational cost.

2.17%, while the latter gets 2.01%. Moreover, the R@K
gap between the two models grows significantly with val-
ues of K greater than 10.

Takeaway: We observe that using audio alone, without
visual input, results in only modest performance improve-
ments for Zero-shot CLIP, VLG-Net, and Moment-DETR.
On the other hand, incorporating visual cues can enhance
the performance of all baselines. Nevertheless, the best
overall performance is achieved by combining audio, visual
and text cues.

C.2. Describable Windows

Although the first ablation study suggests that combin-
ing audio and video inputs as a representation is powerful,
the current Guidance Model used is query-dependent and
relies on textual queries to identify irrelevant windows. Our
method could be made more efficient by identifying win-
dows that are non-describable regardless of the input query,
allowing the Guidance Model to process the video/audio

Model IoU=0.1 IoU=0.3 IoU=0.5

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot CLIP [8] 5.43 11.87 15.98 2.69 7.88 11.06 1.15 4.54 6.86
VLG-Net [9] 2.15 7.65 12.00 1.50 5.84 9.56 0.95 3.83 6.43
Moment-DETR [4] 0.24 0.97 1.78 0.13 0.76 0.85 0.08 0.21 0.09

†Zero-shot CLIP [8] 7.39 14.90 19.09 3.76 10.32 13.95 1.77 5.93 9.00
†VLG-Net [9] 3.31 10.17 16.06 2.21 7.83 13.09 1.45 6.20 10.24
†Moment-DETR [4] 3.71 11.37 17.94 2.84 8.53 13.62 2.04 5.41 8.98

Table 4: Describable windows beyond actions. We compare the
performance of our baseline models with the guidance module (†)
and without guidance on actionless queries only. For this purpose,
we extract actionless queries from MAD [8] test set and evaluate
using mR@K for K∈{1, 5, 10}. The results showcase that our
guidance method is not solely learning action-based concepts.

streams only once. To investigate an efficient approach, we
devise a query-agnostic Guidance Model that does not pro-
cess any textual query as part of its input.

In Table 3, we report the full results from which we
derived Table 4 of the main paper. Using audio-visual
cues alone (that is, a query-agnostic setup) already leads
to improvements for VLG-Net [9] and Moment-DETR [4].
On the other hand, employing query-dependent guidance
plays a vital role in boosting the performance of all three
baseline models, as it helps reduce the search space for
the video grounding task. For instance, VLG-Net [9]
goes from 11.32% to 14.31% R@5-IoU=0.1 when employ-
ing query agnostic guidance, and from 11.32% to 15.52%
R@5-IoU=0.1 when employing query dependent guidance.
Similarly, the performance of Moment-DETR [4] for most
metrics also grows: it goes from 2.62% to 4.54% R@10-
IoU=0.1 with query agnostic guidance, and from 2.62% to
22.80% with query dependent guidance. Lastly, we observe
that zero-shot CLIP only displays a noticeable performance
boost when leveraging query-dependent guidance. For ex-
ample, R@5-IoU=0.3 increases from 9.88% to 12.60% in
the query-dependent setting, and from 9.88% to 9.93% in
the query-agnostic setting.

Takeaway: Our findings suggest that the query-
dependent setup delivers better performance, but at the ex-
pense of increased computational cost as the number of
queries increases. Conversely, the query-agnostic setup is
computationally efficient since the Guidance Model pro-
cesses the video and audio only once, making it ideal for
real-time or low-resource scenarios.

C.3. Describable Windows beyond actions.

We proposed a new evaluation setup that highlights the
differences between our guidance model and proposal mod-



Model Modalities IoU=0.1 IoU=0.3 IoU=0.5

Audio Visual R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

Zero-shot CLIP [8]

✗ ✗ 6.65 14.80 19.79 36.30 45.59 3.19 9.88 13.84 27.47 35.33 1.35 5.31 8.03 18.06 23.93
✓ ✗ 6.75 16.08 21.67 36.51 45.40 3.50 10.85 15.72 28.45 35.49 1.63 6.23 9.28 19.31 25.07
✗ ✓ 8.33 17.42 22.16 36.91 44.10 4.21 11.93 16.16 29.51 36.47 1.89 6.69 10.01 21.23 27.32
✓ ✓ 9.05 18.00 22.76 37.24 44.37 4.52 12.60 16.83 30.13 37.02 2.01 7.14 10.65 21.75 27.76

VLG-Net [9]

✗ ✗ 3.43 11.32 17.19 37.80 48.63 2.56 8.92 13.92 32.38 42.34 1.49 5.54 9.01 22.93 31.34
✓ ✗ 4.43 13.21 19.20 38.70 48.93 3.34 10.67 15.80 33.20 42.18 2.03 6.81 10.28 23.96 31.70
✗ ✓ 4.85 14.56 21.15 41.73 51.70 3.60 11.55 17.45 36.43 45.55 2.04 7.30 11.62 26.86 35.18
✓ ✓ 5.37 15.52 22.37 42.58 52.72 4.01 12.56 18.58 37.33 46.44 2.31 8.16 12.57 28.14 36.46

Moment-DETR [4]

✗ ✗ 0.28 1.44 2.62 10.41 18.21 0.20 1.07 1.87 7.61 13.18 0.12 0.62 1.05 4.47 7.93
✓ ✗ 1.41 5.72 9.67 27.59 39.10 1.05 4.31 7.32 21.66 31.02 0.62 2.56 4.35 12.91 18.49
✗ ✓ 4.24 14.41 21.74 44.77 56.11 3.13 11.07 16.84 35.99 45.26 1.86 6.58 9.98 21.64 27.28
✓ ✓ 4.84 15.34 22.80 46.01 57.06 3.69 11.95 17.99 37.10 46.19 2.17 7.25 10.93 22.62 28.09

Table 5: Modality comparison for the Guidance Model (full metrics). This table contains an ablation study on the modalities to be
used in the Guidance Model. In the first row of each box (rows 1, 5, and 9), we report the baseline performances without score fusion. The
Guidance Model uses three different combinations of modalities: (i) audio and text; (ii) video and text; and (iii) audio, video, and text. We
evaluate all model configurations on the validation partition of the MAD dataset, using Recall@K with IoU=θ for K∈{1, 5, 10, 50, 100}
and θ∈{0.1, 0.3, 0.5}. Generally speaking, the Guidance Model can boost the baseline results under all configurations, and it achieves the
best overall performance when combining all modalities.

Method Inference Avg. Temp. # Queries×movies Number of
Time Windows per movie Params (M)

Grounding: VLG-Net 18 Hours 545 72044× 112 7.5
Grounding: Moment-DETR 4.2 Hours 545 72044× 112 4.8

Guidance: Query-agnostic ∼2 Minutes 1091 −× 112 4.8
Guidance: Query-dependent 8.3 Hours 1091 72044× 112 5.0

Table 6: Inference time on the MAD [8] dataset. Query-agnostic needs
a forward pass per movie, while dependent is proportional to the no. of
queries/temporal windows. We don’t include CLIP [7, 8] as our approach
leverages the model’s own pre-computed features making the comparison
unfair.

els. Specifically, we consider MAD [8] queries that do not
contain verbs and therefore do not refer to actions. We ac-
knowledge that interpreting this type of query is a challeng-
ing task, distinguishing our approach from other computer
vision methods like temporal proposals [1, 12, 10, 3, 6],
which do not deal with moments lacking any action el-
ement. Thus, to confirm our hypothesis, we present in
Table 4 the performance improvement that our Guidance
Model offers for actionless queries. The Guidance Model
demonstrated a boost in performance in all of the baselines.
For example, R@1-IoU0.1 for Zero-shot CLIP improved
from 5.43% to 7.39%, VLG-Net at R@10-IoU0.3 improved
from 9.56% to 13.09%, and Moment-DETR from 0.21% to
5.41% in R@5-IoU0.5.

Takeaway: The higher performance of the Guidance
Model for queries without actions is clear evidence that it
is not solely focused on actions, but can also handle queries
that involve describing the environment and its characteris-
tics (adjectives, nouns). The above statement sets our ap-
proach apart from proposal-based methods, since proposals
methods [1, 12, 10, 3, 6] focus only on actions.

D. Inference Time.
Table 6 displays inference time for the baseline video

grounding models and the Guidance Models. The query-
agnostic configuration is intended for situations with re-
stricted computational capabilities. It only requires one
sliding-window forward pass per movie, covering 112
movies in total. On the other hand, the query-dependent
configuration requires more computational power, as the
number of forward passes is directly linked to the total num-
ber of queries (72,000) and temporal windows.

A potential direction for future exploration in this pa-
per involves improving inference time efficiency by strate-
gically employing the Guidance Model to pre-filter win-
dows before grounding. This concept revolves around the
careful prioritization of recall or precision, depending on
the specific needs of the given application. By using the
abilities of the Guidance Model, we can choose to han-
dle windows that are most important, thereby reducing the
total time for inference while maintaining desired perfor-
mance standards. This potential also offers an opportunity
to tailor the processing pipeline for different applications’
unique traits, finding a balanced compromise between com-
putational efficiency and outcome accuracy.
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