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1. Video Results

This supplement includes video results for scenes from
the 360 benchmark. We also present video results for new
more-challenging scenes that we have captured to qualita-
tively demonstrate various kinds of aliasing and our model’s
ability to ameliorate that aliasing.

Affine Generative Latent Optimization The video re-
sults presented in mip-NeRF 360 use the appearance-
embedding approach of NeRF-W [8], which assigns short
GLO vectors [4] to each image in the training set that are
concatenated to the input of the view-dependent MLP. By
jointly optimizing over these embeddings during training,
optimization is able to explain away view-dependent effects
such as variation in exposure and lighting. On scenes with
significant illumination variation we found this approach to
be reasonably effective, but it is limited by the relatively
small size of the view-dependent branch of our MLP com-
pared to NeRF-W and mip-NeRF 360. We therefore use an
approach similar to NeRF-W’s GLO approach, but instead
of optimizing over a short feature that is concatenated onto
our bottleneck vector, we optimize over an affine transfor-
mation of our bottleneck vector itself. Furthermore, we ex-
press this affine transformation not just with a per-image la-
tent embedding, but also with a small MLP that maps from a
per-image latent embedding to an affine transformation. We
found that optimizing over the large space of embeddings
and MLP weights resulted in faster training than the GLO
baseline, which allows the model to more easily explain per-
image appearance variation without placing floaters in front
of training cameras.

We allocate an 128-length vector for each image in the
training set and use those vectors as input to a two-layer
MLP with 128 hidden units whose output is two vectors
(scale and shift) that are the same length as the bottleneck.
The internal activation of the MLP is a ReLU, and the fi-
nal activation that yields our scaling is exp. We scale and
shift each bottleneck by the two MLP outputs before eval-
uating the view-dependent MLP. This approach of optimiz-

ing an affine function of an internal activation resembles
prior techniques in the literature for modulating activations
to control “style” and appearance [6, 12, 13]. This tech-
nique is only used to produce our video results and is not
used for the experiments mentioned in the paper, as it does
not improve quantitative performance on our metrics.

2. Multisampling Pattern Derivation
The hexagonal multisampling pattern presented in the

paper was constructed so as to satisfy several criteria:
1. Samples should be uniformly distributed along the ray,

to ensure good coverage along the ray.
2. Samples should be uniformly distributed in terms of

angles around the ray.
3. The sample mean and covariance of the set of samples

should match the analytical mean and covariance of
the conical frustum.

4. The number of points should be as small as possible,
for the sake of efficiency.

We additionally chose to always distribute samples at a dis-
tance from the ray that is proportional to the radius of the
cone at whatever t value the sample is located. This sim-
plifies the analysis of our pattern, though it does mean that
none of our samples are placed exactly along the ray, which
may be contrary to the reader’s expectations. Experimen-
tally, we found little value in adding additional multisam-
ples exactly along the ray, which is consistent with the per-
formance of the unscented transform baseline (which places
multiple points along the ray).

Before constructing our conical frustum-shaped multi-
sampling pattern, we can simplify our analysis by first con-
structing an n-point multisampling pattern for a cylinder.
Here is a set of n coordinates that, for a carefully chosen θ
and n, has a mean of 0⃗ and a covariance of I3:

 cos(θj)/
√
3

sin(θj)/
√
3

j−(n−1)/2√
n(n2−1)/12

 ∣∣∣∣∣ j = 0, 1, . . . , n

 . (1)

Perhaps surprisingly, for small values of n and assum-



ing uniformly-distributed values of θ, this zero-mean and
identity-covariance property appears to only hold for n = 6
and two specific choices of θ:

θ1 = [ 0, 2π/3, 4π/3, 3π/3, 5π/3, π/3 ] , (2)
θ2 = [ 0, 3π/3, 2π/3, 5π/3, 4π/3, π/3 ] . (3)

Because our sampling pattern is rotationally symmetric
around θ and bilaterally symmetric around the z = 0 plane
of the cylinder, rotating or mirroring the coordinates cor-
responding to these two choices of θ preserves their zero-
mean and identity-covariance. We use θ1 in our work, be-
cause θ2 exhibits potentially-undesirable higher-order cor-
relation between adjacent angles (note that θ2 consists of
three pairs of adjacent angles, while θ1 has only two adja-
cent angles that are nearby).

With this cylindrical multisampling pattern that satisfies
our requirements, we can then warp these samples into the
shape of a conical frustum, while also shifting and scaling
the coordinates such that they match the means and covari-
ances derived in mip-NeRF [2]. This yields the formulas
shown in Equations 2 and 3 in the main paper. This warp-
ing results in a slight mismatch between the sample covari-
ance of our multisample coordinates and the covariance of
the frustum: the full covariance matrices are not necessarily
identical. However, the variance along the ray and the total
variance perpendicular to the ray are both equal to that of
the conical frustum, and the mismatch between full covari-
ances goes to zero as t ≫ ṙ (which is generally the case for
real image data, where ṙ is usually small).

3. Scale Featurization
Along with features fℓ we also average and concatenate

a featurized version of {ωj,ℓ} for use as input to our MLP:

(2 ·meanj(ωj,ℓ)− 1)
√
V 2
init +��∇(mean(V 2

ℓ )) , (4)

where��∇ is a stop-gradient operator and Vinit is the magni-
tude used to initialize each Vℓ. This feature takes ωj (shifted
and scaled to [−1, 1]) and scales it by the standard devia-
tion of the values in Vℓ (padded slightly using Vinit , which
guards against the case where a Vℓ’s values shrink to zero
during training). This scaling ensures that our featurized
scales have roughly the same magnitude features as the fea-
tures themselves, regardless of how the features may grow
or shrink during training. The stop-gradient prevents op-
timization from indirectly modifying this scale-feature by
changing the values in Vℓ.

When computing the downweighting factor ω, for the
sake of speed we use an approximation for erf(x):

erf(x) ≈ sign(x)
√
1− exp(−(4/π)x2) . (5)

This has no discernible impact on quality and a very
marginal impact on performance.

4. Spatial Contraction
Mip-NeRF 360 [3] parameterizes unbounded scenes

with bounded coordinates using a spatial contraction:

C(x) =

{
x ∥x∥ ≤ 1(
2− 1

∥x∥

)(
x

∥x∥

)
∥x∥ > 1 .

(6)

This maps values in [−∞,∞]d to [−2, 2]d such that res-
olution in the contracted domain is proportional to what is
required by perspective projection — scene content near the
origin is allocated significant model capacity, but distant
scene content is allocated model capacity that is roughly
proportional to disparity (inverse distance).

Given our multisampled isotropic Gaussians {xj , σj},
we need a way to efficiently apply a scene contraction. Con-
tracting the means of the Gaussians simply requires evaluat-
ing each C(xj), but contracting the scale is non-trivial, and
the approach provided by mip-NeRF 360 [3] for contracting
a multivariate Gaussian is needlessly expressive and expen-
sive for our purposes. Instead, we linearize the contrac-
tion around each xj to produce JC(xj), the Jacobian of the
contraction at xj , and we produce an isotropic scale in the
contracted space by computing the geometric mean of the
eigenvalues of JC(xj). This is the same as computing the
determinant of the absolute value of JC(xj) and taking its
dth root (d = 3 in our case, as our coordinates are 3D):

C(σj) = σj |det(JC(xj))|
1/d

. (7)

This is equivalent to using the approach in mip-NeRF
360 [3] to apply a contraction to a multivariate Gaussian
with a covariance matrix of σ2Id and then identifying the
isotropic Gaussian with the same generalized variance as
the contracted multivariate Gaussian, but requires signifi-
cantly less compute. This can be accelerated further by de-
riving a closed-form solution for our specific contraction:

|det(JC(xj))|
1/3

=

(
3
√

2max(1, ∥xj∥)− 1

max(1, ∥xj∥)

)2

(8)

5. Blurring A Step Function
Algorithm 1 contains pseudocode for the algorithm de-

scribed in the paper for convolving a step function with a
rectangular pulse to yield a piecewise linear spline. This
code is valid JAX/Numpy code except that we have over-
loaded sort() to include the behavior of argsort().

6. Power Transformation Details
Here we expand upon the power transformation P(x, λ)

presented in the paper. First, let’s expand upon its definition



Algorithm 1 xr,yr = blur stepfun(x,y, r)

xr, sortidx = sort(concatenate([x− r,x+ r]))
y′ = ([y, 0]− [0,y])/(2r)
y′′ = concatenate([y′,−y′])[sortidx [:−1]]
yr = [0, cumsum((xr[1 :]− xr[:−1]) cumsum(y′′))]

to include its two removable singularities and its limits as λ
approaches ±∞:

P(x, λ) =



x λ = 1

log(1 + x) λ = 0

ex − 1 λ = ∞
1− e−x λ = −∞
|λ−1|

λ

((
x

|λ−1| + 1
)λ

− 1

)
otherwise

(9)

Note that the λ = −∞, 0,+∞ cases can and should be im-
plemented using the log1p() and expm1() operations
that are standard in numerical computing and deep learn-
ing libraries. As discussed, the slope of this function is 1
near the origin, but further from the origin λ can be tuned
to describe a wide family of shapes: exponential, squared,
logarithmic, inverse, inverse-square, and (negative) inverse-
exponential. Scaling the x input to P lets us control the
effective range of inputs where P(x, λ) is approximately
linear. The second derivative of P at the origin is ±1, de-
pending on if λ is more or less than 1, and the output of P
is bounded by λ−1

λ when λ < 0.
This power transformation relates to the general robust

loss ρ(x, α, c) [1], as ρ can be written as P applied to
squared error: ρ(x, λ, 1) = P(x2/2, λ/2). P also resembles
a reparameterized Yeo–Johnson transformation [15] but al-
tered such that the transform always resembles a straight
line near the origin (the second derivative of the Yeo-
Johnson transformation at the origin is unbounded).

Distortion Loss As discussed in the paper, our power
transformation is used to curve metric distance into a nor-
malized space where resampling and interlevel supervision
can be performed effectively. We also use this transfor-
mation to curve metric distance within the distortion loss
used in mip-NeRF 360. By tuning a transformation to have
a steep gradient near the origin that tapers off into some-
thing resembling log-distance, we obtain a distortion loss
that more aggressively penalizes “floaters” near the camera,
which significantly improves the quality of videos rendered
from our model. This does not significantly improve test-
set metrics on the 360 dataset, as floaters do not tend to
contribute much to error metrics computed on still images.
In all of our experiments we set our model’s multiplier on
distortion loss to 0.005. See Figure 1 for a visualization of
our curve and the impact it has on distortion loss.

Figure 1: The behavior of mip-NeRF 360’s distortion loss
can be significantly modified by applying a curve to met-
ric distance, which we do with our power transformation.
Top: using a linear curve (i.e., using metric distance t it-
self) results in a distortion loss that heavily penalizes dis-
tant scene content but ignores “floaters” close to the camera
(the single large histogram bin near t = 0), as can be seen
by visualizing the gradient magnitude of distortion loss as a
heat-map over the NeRF histogram shown here. Bottom:
Curving metric distance with a tuned power transforma-
tion P(10000x,−0.25)) before computing distortion loss
causes distortion loss to correctly penalize histogram bins
near the camera.

7. Model Details

Our model, our “mip-NeRF 360 + iNGP” baseline, and
all ablations (unless otherwise stated) were trained for 25k
iterations using a batch size of 216. We use the Adam op-
timizer [7] with β1 = 0.9, β2 = 0.99, ϵ = 10−15, and we
decay our learning rate logarithmically from 10−2 to 10−3

over training. We use no gradient clipping, and we use an
aggressive warm-up for our learning rate: for the first 5k
iterations we scale our learning rate by a multiplier that is
cosine-decayed from 10−8 to 1.

In our iNGP hierarchy of grids and hashes, we use 10
grid scales that are spaced by powers of 2 from 16 to 8192,
and we use 4 channels per level. We found this to work
slightly better and faster than iNGP’s similar approach of
spacing scales by

√
2 and having 2 channels per level. Grid

sizes nℓ that are greater than 128 are parameterized identi-
cally to iNGP using a hash of size 1283.

We inherit the proposal sampling procedure used by mip-
NeRF 360: two rounds of proposal sampling where we
bound scene geometry and recursively generate new sam-
ple intervals, and one final NeRF round in which we render
that final set of intervals into an image. We use a distinct
NGP and MLP for each round of sampling, as this improves
performance slightly. Because high-frequency content is



largely irrelevant for earlier rounds of proposal sampling,
we truncate the hierarchy of grids of each proposal NGP at
maximum grid sizes of 512 and 2048. We additionally only
use a single channel of features for each proposal NGP, as
(unlike the NeRF NGP) these models only need to predict
density, not density and color.

We found that small view-dependent MLP used by iNGP
to be a significant bottleneck to performance, as it limits the
model’s ability to express and recover complicated view-
dependent effects. This not only reduces rendering quality
on shiny surfaces, but also causes more “floaters” by en-
couraging optimization to explain away view-dependent ef-
fects with small floaters in front of the camera. We therefore
use a larger model: We have a view-dependent bottleneck
size of 256, and we process those bottleneck vectors with a
3-layer MLP with 256 hidden units and a skip connection
from the bottleneck to the second layer.

Ablations In our non-normalized weight decay ablation,
we use weight decay with a multiplier of 10−9, though we
found performance to be largely insensitive to what multi-
plier is used. Our “Naive Supersampling (6×)” and “Jit-
tered Supersampling (6×)” ablations in the paper caused
training to run out of memory, so those experiments use half
of the batch size used in other experiments and are trained
for twice as many iterations.

8. Results

An per-scene version of our single-scale results on the
mip-NeRF 360 dataset can be found in Table 1.

We also include per-scene and average results for the
Blender dataset [9] in Table 2. For these Blender results,
we use the same model as presented in the paper, with the
following changes: we set the ray near and far plane dis-
tances to 2 and 6 respectively, we use a linear (no-op) curve
when spacing sample intervals along each ray, we assume a
white background color, and we increase our weight decay
multiplier to 10.
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PSNR Outdoor Indoor
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [9, 5] 21.76 19.40 23.11 21.73 21.28 28.56 25.67 26.31 26.81
mip-NeRF [2] 21.69 19.31 23.16 23.10 21.21 28.73 25.59 26.47 27.13
NeRF++ [16] 22.64 20.31 24.32 24.34 22.20 28.87 26.38 27.80 29.15
Instant NGP [11, 14] 22.79 19.19 25.26 24.80 22.46 30.31 26.21 29.00 31.08
mip-NeRF 360 [3, 10] 24.40 21.64 26.94 26.36 22.81 31.40 29.44 32.02 33.11
mip-NeRF 360 + iNGP 24.51 21.82 27.05 25.08 23.01 31.07 24.01 30.18 31.12
Our Model 25.80 22.40 28.20 27.55 23.89 32.65 29.38 32.50 34.46

SSIM Outdoor Indoor
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [9, 5] 0.455 0.376 0.546 0.453 0.459 0.843 0.775 0.749 0.792
mip-NeRF [2] 0.454 0.373 0.543 0.517 0.466 0.851 0.779 0.745 0.818
NeRF++ [16] 0.526 0.453 0.635 0.594 0.530 0.852 0.802 0.816 0.876
Instant NGP [11, 14] 0.540 0.378 0.709 0.654 0.547 0.893 0.845 0.857 0.924
mip-NeRF 360 [3, 10] 0.693 0.583 0.816 0.746 0.632 0.913 0.895 0.920 0.939
mip-NeRF 360 + iNGP 0.692 0.615 0.840 0.720 0.633 0.911 0.821 0.910 0.930
Our Model 0.769 0.642 0.860 0.800 0.681 0.925 0.902 0.928 0.949

LPIPS Outdoor Indoor
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [9, 5] 0.536 0.529 0.415 0.551 0.546 0.353 0.394 0.335 0.398
mip-NeRF [2] 0.541 0.535 0.422 0.490 0.538 0.346 0.390 0.336 0.370
NeRF++ [16] 0.455 0.466 0.331 0.416 0.466 0.335 0.351 0.260 0.291
Instant NGP [11, 14] 0.398 0.441 0.255 0.339 0.420 0.242 0.255 0.170 0.198
mip-NeRF 360 [3, 10] 0.289 0.345 0.164 0.254 0.338 0.211 0.203 0.126 0.177
mip-NeRF 360 + iNGP 0.272 0.305 0.134 0.256 0.298 0.198 0.259 0.129 0.171
Our Model 0.208 0.273 0.118 0.193 0.242 0.196 0.185 0.116 0.173

Table 1: Per-scene performance on the dataset of “360” indoor and outdoor scenes from mip-NeRF 360 [3].



PSNR
chair drums ficus hotdog lego materials mic ship avg

NeRF [9, 5] 34.17 25.08 30.39 36.82 33.31 30.03 34.78 29.30 31.74
mip-NeRF [2] 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
mip-NeRF 360 [3, 10], 256 hidden 35.03 25.73 32.61 37.44 36.10 30.31 36.22 29.98 32.93
mip-NeRF 360 [3, 10], 512 hidden 35.65 25.60 33.19 37.71 36.10 29.90 36.52 31.26 33.24
Our Model 34.84 25.84 33.90 37.14 34.84 31.66 35.15 31.38 33.10

SSIM
chair drums ficus hotdog lego materials mic ship avg

NeRF [9, 5] 0.975 0.925 0.967 0.979 0.968 0.953 0.987 0.869 0.953
mip-NeRF [2] 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882 0.961
mip-NeRF 360 [3, 10], 256 hidden 0.980 0.934 0.977 0.981 0.980 0.953 0.990 0.883 0.960
mip-NeRF 360 [3, 10], 512 hidden 0.983 0.931 0.979 0.982 0.980 0.949 0.991 0.893 0.961
Our Model 0.983 0.944 0.985 0.984 0.980 0.969 0.991 0.929 0.971

LPIPS
chair drums ficus hotdog lego materials mic ship avg

NeRF [9, 5] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150 0.050
mip-NeRF [2] 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138 0.043
mip-NeRF 360 [3, 10], 256 hidden 0.021 0.064 0.024 0.027 0.018 0.047 0.011 0.135 0.043
mip-NeRF 360 [3, 10], 512 hidden 0.018 0.069 0.022 0.024 0.018 0.053 0.011 0.119 0.042
Our Model 0.017 0.050 0.015 0.020 0.019 0.032 0.007 0.091 0.031

Table 2: Per-scene and average performance on the Blender dataset from NeRF [9].


