Active Stereo Without Pattern Projector — supplementary material

Luca Bartolomei*? Matteo Poggif Fabio Tosi' Andrea Contif Stefano Mattoccia*™ |
*Advanced Research Center on Electronic System (ARCES)
"Department of Computer Science and Engineering (DISI)
University of Bologna, Italy
{luca.bartolomei5, m.poggi, fabio.tosi5, andrea.conti35, stefano.mattoccia}@unibo.it

https://vppstereo.github.io/

This document provides additional details regarding ICCV paper “Active Stereo Without Pattern Projector”.
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We extend the ablation study reported in the main paper (Tab. 1) with 9 7 2 10000 3| 985 926 937 93l
an exhaustive study with a larger number of configurations. Tab. II collects 0 7 2 0435 1] %85 923 o4l 931
the results achieved by playing with the three occlusion handling strategies Table I: Occlusion handling - grid
—ie., “BKGD”, “NO”, and “FGD”, respectively, in sub-tables (a), (b) and search. We evaluate the effect of the
(c) —, the different virtual patterns (ii)-(vii) presented in the main paper, and hyper-parameters 75, 7y, A, 7, t.

also measuring the impact of Alpha-blending («) with different intensities
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VPP hyper-parameters Error Rate (%) > 2 VPP hyper-parameters Error Rate (%) > 2 VPP hyper-parameters Error Rate (%) > 2
Pattern « Patch  Occ. | RAFT-St. [{] PSMNet[I/] rSGM Pattern o Patch Occ. | RAFT-St. [{] PSMNet [I] rSGM Pattern « Patch Occ. | RAFT-St. [/] PSMNet [!] rSGM
X X X X X 115 29.3 343 X X X X X 1.5 29.3 343 X X X X X 1.5 29.3 343
v (i) X X BKGD 52 153 20.6 v (ii) X X FGD 52 15.0 205 v (ii) 3 X NO 53 152 20.5
4 (ii) 0.8 X BKGD 53 15.5 20.7 v (ii) 0.8 X FGD 53 15.3 20.6 v (ii) 0.8 X NO 54 15.4 20.7
v (ii) 0.4 LS BKGD 5.8 16.7 21.2 v (ii) 0.4 X FGD 58 16.6 21.1 v (ii) 0.4 X NO 5.8 16.6 21.2
v (iii) X X BKGD 5.1 152 20.2 v (iii) X X FGD 52 149 20.1 v (iii) X X NO 52 15.0 20.2
v (i) 0.8 X BKGD 52 153 203 v (iii)) 0.8 X FGD 53 15.0 20.2 v (i) 0.8 X NO 53 152 203
v (i) 0.4 X BKGD 5.6 16.1 20.5 v (iii) 0.4 X FGD 5.6 16.0 20.5 v (i) 04 X NO 5.6 16.0 20.5
v (vi) X 3x3 BKGD 52 16.0 155 v (vi) X 3x3 FGD 48 149 14.9 v (vi) X 3x3 NO 5.1 155 15.1
v (vi) 08 3x3 BKGD 5.1 15.7 155 v (vi) 08 3x3 FGD 4.8 14.7 15.1 v (viy 08 3x3 NO 5.0 152 15.2
v (vi) 04 3x3 BKGD 5.0 153 159 v (vi) 04 3x3 FGD 5.0 14.6 15.6 v (vi) 04 3x3 NO 5.1 14.9 15.7
v (iv) X 3x3 BKGD 4.8 16.0 16.6 v (iv) X 3x3 FGD 4.6 14.7 15.7 v (iv) X 3x3 NO 4.8 15.3 15.9
v (iv) 08 3x3 BKGD 4.8 15.6 16.5 v (ivy 08 3x3 FGD 4.6 14.6 15.7 v (iv) 08 3x3 NO 4.8 15.1 15.8
v (iv) 04 3x3 BKGD 4.9 15.0 16.7 v (ivy 04 3x3 FGD 4.8 14.4 16.1 v (iv) 04 3x3 NO 4.9 14.7 16.2
v (vii) X 3x3 BKGD 4.9 16.1 16.0 v (vii) X 3x3 FGD 4.6 14.8 15.2 v (vii) X 3x3 NO 4.8 15.5 154
v (vii) 0.8 3x3 BKGD 49 15.8 159 v (vii) 08 3x3 FGD 4.6 14.7 15.1 v (vii) 08 3x3 NO 4.8 15.4 15.2
v (vii) 04 3x3 BKGD 5.0 152 159 v (vii) 04 3x3 FGD 4.8 14.4 153 v (vii) 04 3x3 NO 49 149 154
v ) X 3x3 BKGD 4.8 16.4 16.6 v ) X 3x3 FGD 45 14.8 155 v ) X 3x3 NO 4.7 155 15.7
v ) 08 3x3 BKGD 4.8 159 16.3 v ) 08 3x3 FGD 4.5 14.6 153 v ) 08 3x3 NO 4.8 153 155
v ) 04 3x3 BKGD 5.0 15.1 16.2 v ) 04 3x3 FGD 4.8 144 15.6 v ) 04 3x3 NO 4.9 14.8 15.7
v (vi) X 5x5 BKGD 58 17.9 14.8 v (vi) X 5x5 FGD 4.6 15.6 13.6 v (vi) X 5x5 NO 52 16.3 13.8
v (vi) 08 5x5 BKGD 55 17.1 14.8 v (vi) 08 5x5 FGD 4.6 152 13.7 v (vi) 08 5x5 NO 5.1 159 13.8
v (vi) 04 5x5 BKGD 50 15.7 14.9 v (vi) 04 5x5 FGD 4.7 14.7 14.0 v (vi) 04 5x5 NO 5.0 152 14.3
v (iv) X 5x5 BKGD 53 18.0 18.8 v (iv) X 5x5 FGD 4.4 154 17.0 v (iv) X 5x5 NO 4.9 16.4 17.0
v (iv) 08 5x5 BKGD 52 17.3 17.1 v (ivy 08 5x5 FGD 4.3 15.1 154 v (iv) 08 5x5 NO 4.9 16.0 15.5
v (iv) 04 5x5 BKGD 5.0 15.8 17.0 v (ivy 04 5x5 FGD 4.6 14.7 15.8 v (iv) 04 5x5 NO 4.9 152 15.8
v (vii) X 5x5 BKGD 53 17.8 159 v (vii) X 5x5 FGD 4.3 15.6 14.3 v (vii) X 5x5 NO 4.8 16.4 14.4
v (vii) 0.8 5x5 BKGD 5.0 172 15.6 v (vii) 08 5x5 FGD 43 152 14.1 v (vii) 08 5x5 NO 4.8 16.2 142
v (vii) 04 5x5 BKGD 49 16.0 155 v (vii) 04 5x5 FGD 45 14.6 14.3 v (vii) 04 5x5 NO 4.8 155 145
v ) X 5x5 BKGD 52 18.1 19.3 v ) X 5x5 FGD 4.3 155 17.3 v ) X 5x5 NO 4.8 16.6 17.4
v ) 08 5x5 BKGD 5.1 175 17.3 v ) 08 5x5 FGD 4.3 152 154 v ) 08 5x5 NO 4.7 16.2 155
v ) 04 5x5 BKGD 4.9 163 16.9 v ) 04 5x5 FGD 4.4 14.7 154 v ) 04 5x5 NO 4.8 155 15.6
(a) (b) (c)

Table II: Ablation on main projection hyper-parameters. Results on Midd-A. Networks trained on synthetic data.

(none (i.e., 1.0, 0.4 and 0.8) and the patch size (none (i.e., 1 x 1), 3 x 3 or
5 X 5).

As in the main paper, we study the impact of the different VPP config-
urations on the disparity maps predicted by RAFT-Stereo [4], PSMNet [1] or estimated by the rfSGM algorithm [7] on the
Middlebury [10] Additional split (Midd-A). For RAFT-Stereo and PSMNet, we use weights obtained after training on syn-
thetic images only. From a first look, we can notice how determining the best overall configuration is not trivial: indeed, the
configuration we select for the experiments in the main paper (in yellow) is not the absolute winner in this study, yet allowing
to outperform existing techniques already [6, 2]. Nonetheless, from this exhaustive study, we draw some general take-home
messages to define the best set of configurations to deploy VPP.

Occlusion-handling. By comparing sub-tables (a), (b) and (c), we can notice that a proper handling of the pattern
projection near occlusions is helpful, most times, to attain the best results. Indeed, applying the virtual pattern according to
“FGD” strategy (b) — i.e., by encouraging the matching of an occluded region with its own occluder — yields better results
with respect to not handling occlusions at all (a) or to the naive projection of the pattern in the not occluded regions only (c),
when the remaining hyper-parameters remain unchanged.

Patch size. In general, projecting a pattern on local patches (iv)-(vii) rather than single pixels (ii)-(iii) yields better results.
Not surprisingly, acting on a local region allows for easing the visual correspondence task much more than intervening on
single pixels alone. Increasing the patch size from 3 x 3 to 5 x 5 can further improve the results with rSGM, while it yields
mixed results with RAFT-Stereo (often improving) and PSMNet (which seems to benefit more from 3 x 3 patches). We
argue that this behavior is caused by the higher-level cues used by deep stereo networks to perform matching, not necessarily
affected by the local visual distinctiveness in the same manner as traditional algorithms.

Alpha-blending (o). Since image content is crucial for modern stereo networks to compute correspondences, a proper
Alpha-blending of the projected pattern with the original color images is often beneficial. In particular, it allows for compen-
sating for the possibly erroneous correspondence being enforced by large patches near object boundaries. On the contrary,
Alpha-blending always reduces the effectiveness of the virtual pattern when running rSGM, since it dampens the high dis-
tinctiveness of the pattern, which is crucial to ease correspondences when using hand-crafted matching functions.

Different networks/algorithms. Finally, our exhaustive ablation study highlights how different stereo networks and
algorithms react differently to the configurations we experimented. Indeed, depending on the network or algorithm, we have
different configurations yielding the best results. Specifically, RAFT-stereo [4] obtains the best results with 5 x 5 patterns
(iv)-(v) or (vii), often by setting a high Alpha-blending factor (¢ = 0.8) or no Alpha-blending factor at all (o« = 1.0); PSMNet
[1], on the contrary, registers the best improvement with 3 x 3 patterns (iv)-(v) or (vii) and a moderate Alpha-blending factor
(a = 0.4); finally, rSGM [7] attains the best results with 5 x 5 pattern (vi), without any Alpha-blending being applied. For this
reason, we selected a configuration for our main experiments that could balance the accuracy of the three methods without
favoring any in particular.



Midd-14 Midd-21 ETH3D KITTI 142

Depth Points Error Rate std. (%) avg. std. Error Rate std. (%) avg. std. Error Rate std. (%) avg. std. Error Rate std. (%) avg. std.
Model Model name | Train  Test >1 >2 >3 >4 (px) >1 >2 >3 >4 (px) >1 >2 >3 >4 (px) >1 >2 >3 >4 (px)
RAFT-Stereo-vpp [4] | Sceneflow X v 0.06 0.05 0.05 0.07 0.04 0.00 002 000 0.02 0.00 0.10  0.08 0.07 0.06 0.01 0.00 000 000 0.00 0.00
RAFT-Stereo-vpp [1] | Middlebury X v 0.06 0.07 0.09 0.08 0.02 006 007 005 0.06 0.02 0.07 0.05 0.04 0.03 0.00 003 000 002 001 0.00
RAFT-Stereo-vpp [4] | ETH3D X v 0.08 0.08 0.1 0.13 0.02 004 004 004 003 0.01 003 0.03 0.04 0.03 0.01 002 002 001 001 0.00
GMStereo-vpp™ [11] Sceneflow X v 0.01 001 005 0.06 0.01 0.05 0.04 005 005 0.01 0.02 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GMStereo-vpp™ [11] Mixdata X v 0.00 003 002 002 0.00 0.07 003 005 0.06 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CFNet-vpp* [9] Sceneflow X v 0.12 0.1 0.10 0.09 0.23 0.00 000 001 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CFNet-vpp* [9] Middlebury X v 0.04 0.03 0.02 0.03 0.02 001 001 001 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00
HSMNet-vpp [12] Middlebury X v 0.02  0.00 0.01 0.02 0.00 0.06 0.01 001 0.00 0.01 0.14 002 0.03 0.02 0.01 0.00 000 0.00 0.00 0.00
CREStereo-vpp™ [3] ETH3D X v 0.04 002 004 004 0.01 0.04 0.04 006 0.05 0.03 0.05 003 002 002 0.00 0.00 0.00 0.00 0.00 0.00
PSMNet-vpp [1] Sceneflow X v 0.07  0.06 0.05 0.04 0.02 001 000 0.01 0.00 0.00 003 0.04 0.03 0.02 0.00 0.00 000 0.00 0.00 0.00
rSGM-wpp [7] - X v 0.01 0.02 0.00 0.01 0.09 000 000 001 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 000 0.00 0.00 0.00

Table III: Stability of random pattern of type (vi). We present an analysis of the standard deviation of type (vi) virtual
pattern based on a sample size of 5. Our findings indicate that, despite the non-deterministic nature of this pattern, the
observed errors exhibit stability. * uses o = 0.2 for blending.

3. Stability of random pattern

As stated in the main paper, the random patch pattern (vi) proposed and utilized is a non-deterministic technique. To
assess the stability of this approach concerning artifacts, we conduct five inference runs to compute the standard deviation
for various stereo methods, as many as we used in the main paper to calculate the mean errors. Our results, as shown in Table
II1, demonstrate that despite the non-deterministic nature of the approach, errors remain relatively constant. This evidence
indicates that this pattern can be effectively employed in diverse environments and attain stable results. Specifically, the
standard deviation remains below 0.14% for any error rate threshold and below 0.1 px for avg. error, except for CFNet [9]
being slightly less stable (0.23 px on Midd-14).

4. Additional implementation details

When evaluating the accuracy of stereo algorithms and networks with and without VPP, different resizing strategies were
applied to the input images, often following the suggestions of the original authors.

RAFT-Stereo [4] and HSMNet [12] were evaluated using the original image resolution on Middlebury 2014 [7], Middle-
bury 2021 [10], ETH3D [8], and KITTT [5] datasets. CFNet [9], rSGM [7], and PSMNet [ 1] were evaluated using half the
original image resolution on Middlebury 2014 and Middlebury 2021 (because of memory limitations). GMStereo [| 1] and
CREStereo [3] on Middlebury 2014 and Middlebury 2021 were evaluated with image resizing to 1024 x 1536. GMStereo
on ETH3D was evaluated with image resizing to 512 x 768, while CREStereo on ETH3D was evaluated with image resizing
to 768 x 1024. GMStereo on KITTI was evaluated with image resizing to 352 x 1216, while CREStereo on KITTI was
evaluated with image resizing to 1024 x 1536.

5. Qualitative results

We conclude by showing some additional qualitative results to support the effectiveness of VPP further.

Middlebury 2021. Fig. I shows a scene from the Middlebury 2021 dataset, in which we sample 5% points from the
ground-truth to project our virtual pattern. We test four stereo networks trained on synthetic data and the rfSGM algorithm.
We can notice how the original disparity maps suffer from several artifacts and, in most cases, very high error rates. Only
RAFT-Stereo achieves reasonable results. In contrast, by enabling VPP, the results by any method fall below 13% error rate,
with RAFT-Stereo achieving a bad2 error lower than 2%. To better highlight the effect of VPP on images, we show both the
original and hallucinated frames in Fig. II.

KITTI 2015. Fig. I1I shows an example from the KITTI 2015 training set. Specifically, we select the 000104 stereo pair,
being known by practitioners in the field for its very low exposure. Since raw LiDAR measurements are not available for this
specific pair, we sample again 5% points from ground-truth. We can appreciate how, even in this prohibitive environment,
VPP can largely improve the results of stereo networks and the rfSGM algorithm. To better highlight the effect of VPP on
images, we show both the original and hallucinated frames in Fig. I'V.
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Figure I: Cross-domain generalization enhancement: qualitative results on indoor. All networks are trained on synthetic
data and tested on an unseen scenario (Midd-21, scene podiuml): our VPP approach significantly improves cross-domain
generalization compared to the vanilla baselines. Additionally, traditional stereo algorithms, such as rSGM, also benefit from
our approach. * uses o = 0.2 for blending.
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Figure II: Qualitative view of virtual pattern in indoor scenario. Midd-21, scene podiuml
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Figure III: Cross-domain generalization enhancement: qualitative results on outdoor. All networks are trained on syn-
thetic data and tested on an unseen scenario (KITTI 2015, scene 104): our VPP approach significantly improves cross-domain
generalization compared to the vanilla baselines, except for CFNet which achieves mild results. Additionally, traditional
stereo algorithms, such as rSGM, also benefit from our approach. * uses a = 0.2 for blending.
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Figure IV: Qualitative view of virtual pattern in outdoor scenario. KITTI 2015, scene 104
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