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A. Hyperparameters and Training Details
We used the same training parameters as [5], except for

the number of training steps which we had to increase for
the used datasets. All models (except SETR) were trained
for 32k iterations with a batch size of 16 (i.e. 32 images per
batch), a learning rate of 6 × 10−5, and the AdamW op-
timizer [4]. For SETR, we halved the batch size and the
learning rate to account for its high demand of GPU mem-
ory. DynamicEarthNet and HRSCD images were split into
tiles of size 512 and 500, respectively. We use a default
value of K = 10 for most experiments and provide results
for K = 5 and K = 15 to examine parameter sensitiv-
ity to K. In the DynamicMLP mechanism, we reduced the
number of channels by a factor of three to fit the model into
our GPU memory. An extensive listing of the used hyper-
parameters can be found in the configuration YAML files in
the code1. Overall, the training schedules and data loading
pipelines were chosen identically for all methods in order to
ensure maximum comparability.

For MapFormer, FHD [5], ChangeFormer [1], and the
baselines, we use MiT-b2 [8] pre-trained on ImageNet as
backbone, whereas a ResNeSt50 [9] backbone was em-
ployed for ChangerEx [3]. UPerNet and SETR were
equipped with a Swin-S and ViT-B backbone, respectively.
We compare model sizes in Table 1. To counter the effect of
the extreme class imbalance when training FHD, Change-
Former, and ChangerEx on HRSCD, we had to introduce a
class weight of 4 on the change class for binary change de-
tection, which we chose empirically based on the best per-
formance from the range of 1, 2, 4, and 8. Note that this was
not necessary for MapFormer. All experiments were run on
a single 40 GB Nvidia A100 or a comparable device.

B. Additional Experiments
In Table 2, we present further experiments to investigate

certain design choices in our architecture. First, we ex-

1e.g., https://github.com/mxbh/mapformer/blob/
master/configs/conditional_bcd/dynamicearthnet/
mapformer.yaml

Model Params
SegFormer (MiT-b2) 24.7m
UPerNet (Swin-S) 81.2m

SETR-PUP (ViT-B) 97.1m
FHD 29.1m

ChangerEx 26.8m
ChangeFormer 25.0m

MapFormerK=5 30.2m
MapFormerK=10 34.5m
MapFormerK=15 38.8m

Table 1: Number of parameters for different models consid-
ered in our experiments.

amine a modified version of our fusion module where we
have shared attention weights for groups of features (8 at-
tention groups). That is, we reduce the shape of the atten-
tion weights to K × (Df/8) for every spatial location and
reuse each of the attention weights for 8 of the Df channels.
This is inspired by multi-head attention [7] with 8 heads and
reduces the computational complexity when generating the
attention weights. However, we find that this version is in-
ferior to our proposed method (−3.5% IoU).

Next, we assess MapFormer’s performance if we omit
g(1) for (hk)k=1...K (no g(1) for (hk)k=1...K). That is, we
use g(1) only for the attention weights a. Apparently, this
limits the representation capability of our model, leading to
an IoU drop of 2.5%.

Furthermore, we experimented with additional compo-
nents for our contrastive loss module. The first extension is
an additional contrastive loss applied directly on the image
features (contrastive loss between f (1) and f (2)), i.e., we do
not only align/contrast f (1) and f (2) with g(1), but also f (1)

with f (2) directly. However, we were not able to improve
the performance with this approach (−4.1% IoU). Another
version of the contrastive loss included the use of additional
negative samples to counter the imbalance of changed and
unchanged areas (contrastive loss with add. neg. samples).
More precisely, we balanced the number of positive and

https://github.com/mxbh/mapformer/blob/master/configs/conditional_bcd/dynamicearthnet/mapformer.yaml
https://github.com/mxbh/mapformer/blob/master/configs/conditional_bcd/dynamicearthnet/mapformer.yaml
https://github.com/mxbh/mapformer/blob/master/configs/conditional_bcd/dynamicearthnet/mapformer.yaml


Method F1 IoU
MapFormerK=10 (full) 38.0 23.5

8 attention groups 33.3 20.0
no g(1) for (hk)k=1...K 34.7 21.0

contrastive loss between f (1) and f (2) 32.5 19.4
contrastive loss with add. neg. samples 37.0 22.7

Table 2: Additional experiments for MapFormer for Condi-
tional BCD on DynamicEarthNet.

negative pixel pairs in the contrastive loss by randomly sam-
pling pixels with a different semantic class from other spa-
tial locations. This resulted in a strong performance with
an IoU of 22.7%, but did not suffice to outperform our pro-
posed method.

C. Dataset Statistics and Details
Statistics We provide general statistics for the datasets

used in this paper in Table 3. While both DynamicEarth-
Net [6] and HRSCD [2] consider land use/land cover
classes, the resolution of the images differs (3m vs. 0.5m).
Also, HRSCD surpasses DynamicEarthNet in the number
of annotated tiles (5,280 vs. 232,800). However, the per-
centage of change pixels in the image pairs is much higher
for DynamicEarthNet (4.5% vs. 0.8%), i.e., the class im-
balance between ”change” and ”no-change” is more severe
for HRSCD. A major difference between the two datasets
is that DynamicEarthNet provides manual annotations [6],
whereas the annotations in HRSCD come from the Urban
Atlas project of the European Environment Agency (EEA)2.
Furthermore, DynamicEarthNet images contain four bands
(RGB + near-infrared). However, we only use the RGB
information to be able to use pre-trained image encoder
backbones and for better comparability with other methods.
When splitting DynamicEarthNet into training, validation,
and test set, we made sure that each semantic class is repre-
sented in each split.

Creating Pairs on DynamicEarthNet Since Dynam-
icEarthNet consists of multi-temporal time series (24
months), there are two natural options to generate bi-
temporal image pairs. The first is to only use images from
consecutive months, i.e., [(t1, t2), (t2, t3), ..., (t23, t24)].
The second option is to consider all possible pairs, i.e.,
[(t1, t2), (t1, t3), ..., (t1, t24), (t2, t3), (t2, t4)...]. The sec-
ond option leads to significantly more image pairs (24·23 =
552 vs. 23), but introduces high correlations between the
samples. Consequently, we use only consecutive pairs for
validation and testing (as suggested in [6]), but train with
all possible pairs of the time series to augment the data.

Differences between DynamicEarthNet and HRSCD
From our experiments, we gained the high-level insight that

2https://land.copernicus.eu/local/urban-atlas

semantic segmentation is more closely connected to change
detection on DynamicEarthNet than it is on HRSCD. For
example, the bi-temporal SegFormer baseline is competitive
among the bi-temporal SOTA methods on DynamicEarth-
Net, while it is clearly outperformed on HRSCD (see Ta-
ble 2 in the paper). Also, replacing m(1) with a seman-
tic segmentation prediction m̂(1) yields strong results with
MapFormer, whereas the performance on HRSCD cannot
be improved compared to other bi-temporal methods (see
Table 2 in the paper). We argue that the reason for this be-
havior is twofold: first, the binary change ground-truth on
DynamicEarthNet is generated directly from the semantic
segmentation ground truths. In contrast, HRSCD has addi-
tional binary change labels that do not perfectly agree with
the semantic segmentation labels. Thus, a perfect semantic
segmentation model would achieve a perfect binary change
performance on DynamicEarthNet, but not on HRSCD. The
second reason is that the annotations on DynamicEarthNet
were manually created on the images themselves, which is
not the case for HRSCD. Therefore, the DynamicEarthNet
annotations can be considered to be of higher quality (see E
Further Qualitative Results).

The overall performance gap between the datasets can be
explained by the lower resolution of DynamicEarthNet (3m
vs. 0.5m GSD) to a certain extent. The lower resolution
makes it more difficult to classify surface patterns in Dy-
namicEarthNet images, and also results in many small de-
tail changes that are particularly hard to detect. All in all, it
is much more difficult to detect changes with the naked eye
in DynamicEarthNet than in HRSCD (see E Further Quali-
tative Results).

D. Evaluation Protocol for Conditional and
Cross-modal Semantic Change Detection

In Conditional and Cross-modal Semantic Change De-
tection, the are two ways to generate semantic segmentation
predictions for I(2). The first is to directly use the seman-
tic segmentation head’s output m̂(2) (after argmax along the
class dimension). The second option is to additionally uti-
lize m(1) and b̂, and compute the prediction via

m̃(2) = (1− b̂) ·m(1) + b̂ · m̂(2).

That is, m̃(2) simply repeats the pre-change map m(1) for
regions with b̂ = 0 and only uses m̂(2) otherwise. However,
in our experiments, we consider m̂(2) instead of m̃(2) as the
post-change semantic segmentation prediction for the fol-
lowing reason: The evaluation metric SCS (see Equation (1)
in the paper, proposed in [6]) measures the model’s perfor-
mance for binary change detection and semantic segmenta-
tion separately via BC and SC, respectively. Finally, the two
terms are combined via the arithmetic mean to obtain SCS.
If we use m̃(2) for evaluation, the binary change prediction

https://land.copernicus.eu/local/urban-atlas


DynamicEarthNet HRSCD
Years 2018/2019 2005/2006/2012

Spatial Distribution global France
Source PlanetFusion BD ORTHO

GSD (m) 3 0.5
#Classes 7 (6 used) 5

#Images (overall) 54,750 582
Orig image size (px) 1024 x 1024 10k x 10k

Tile size (px) 512 500
#Annotated tiles (used) 5,280 232,800

#Training pairs 38,640 76,400
Changed pixels 4.5% 0.8%

Table 3: Dataset statistics for DynamicEarthNet and HRSCD.

affects the semantic segmentation, i.e., BC and SC are no
longer separate. For instance, every false negative pixel in
b̂ automatically leads to a misclassified pixel in m̃(2) since
the old, outdated semantic class is simply repeated for this
pixel. Thus, to ensure an independent assessment of BC and
SC, we directly use m̂(2) as semantic segmentation predic-
tion in SCD tasks. In practice, however, one may consider
m̃(2) more suitable as it does not alter the given semantic
map m(1) in supposedly unchanged areas, which may be
desirable.

E. Further Qualitative Results

We provide additional qualitative results for HRSCD and
DynamicEarthNet in Figures 1 and 2, respectively. In the
examples from HRSCD (Figure 1), we can see that Map-
Former is generally able to identify the changed areas for
this dataset. However, we observe that the model struggles
to correctly detect the boundaries of the changed segments.
Looking at the input images, the semantic maps m(1) and
m(2), and the binary change ground truth b, we find that the
boundaries of the ground-truth annotations are also rather
imprecise (especially in the last example). Thus, we con-
clude that the quality of the annotations is the main limiting
factor for MapFormer’s performance here. This is consis-
tent with the observation that downsampling the semantic
input m(1) by a factor of 32 only decreased the BC IoU per-
formance by a relative of 9% (vs. 23.9% on DynamicEarth-
net, see Table 2 in the paper).

In the DynamicEarthNet examples (Figure 2), we ob-
serve that detecting change is much more challenging on
this dataset than for HRSCD. Nevertheless, the overall look
of our predictions is relatively accurate. For the last ex-
ample, we have chosen a sample where MapFormer fails.
Here, our model is not able to detect that large parts of the
vegetation in the pre-change image I(1) become soil in the
post-change image I(2). Such changes are barely notice-
able from the visual input, leading to the overall relatively

low binary change IoU scores of all models (our best model
achieved 23.5%).
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