
Self-Supervised Burst Super-Resolution
Supplementary Material

In this supplementary material, we provide additional
details and analysis. First we provide more details about
our method in Section 1. Section 2 provides details about
the SynBSR benchmark used for our comparison with al-
ternate supervised training strategies in Section 4.1 of the
main paper. Section 3 provides details about the compar-
ison on SynBSR benchmark. Section 4 provides details
about the comparison on real-world BurstSR dataset in Sec-
tion 4.1 of the main paper. More details about our experi-
ment on HDR+ dataset in Section 4.2 of the main paper are
provided in Section 5. Next, in Section 6, we provide de-
tails about our analysis of the self-supervised training on
synthetic data in Section 4.3 of the main paper. An analy-
sis of training convergence is provided in Section 7. Sec-
tion 8 shows the impact of error in motion estimation in
our self-supervised training framework. Further qualitative
results on the BurstSR dataset are provided in Section 9.
Results in the linear camera color space is provided in Sec-
tion 10, while Section 11 provides qualitative results on our
synthetic setup. Finally, we discuss the limitations of our
approach in Section 12.

1. Additional method details

Here, we provide some additional implementation de-
tails of our method.

Motion Estimation: We use a pre-trained optical flow net-
work PWC-Net [7] to compute the motion between the first
image in the burst b1, and the images bi from the unseen
set Bunseen. Since the images from the burst are in the Raw
domain, we first perform a nearest-neighbor demosaicking
to obtain an RGB image, which is then passed to the optical
flow network.

Image Formation Model: We use the bilinear interpola-
tion when warping the images using the warp operator Φ.
In all our experiments, the Raw images are obtained using
the Bayer filter mosaic, although our method is applicable
to any color filter array.

2. Details about the SynBSR benchmark in
Sec. 4.1

Quantitatively evaluating burst super-resolution models
on real data is hard due to challenges associated with col-
lecting accurately aligned ground truths. Thus we develop
a synthetic benchmark SynBSR which aims to simulate
the real world training challenges, while allowing accurate
quantitative evaluation. The benchmark is designed for 4x
burst super-resolution task. We generate the training and
test bursts for our synthetic setup using the pipeline intro-
duced in [1]. We use the Isotropic Gaussian kernel as the
blur kernel, instead of Bilinear kernel employed in [1]. We
use the Isotropic Gaussian kernel with a standard deviation
of 1.35 pixels as our blur kernel. Crucially, the methods are
not allowed to use the knowledge of the blur kernel during
training. The bursts are corrupted using the mixed read and
shot noise distribution, with the same parameters as in [1].
For each training burst, we also generate a weakly paired
high resolution groundtruth. In practise, the groundtruth is
captured using optical zoom, often using a different cam-
era as the input [1]. Hence, there exists spatial and color
misalignments between the input burst and the groundtruth.
We simulate these misalignments synthetically. In order to
model the spatial shift between cameras, we first apply ran-
dom translation (uniformly sampled between -24 to 24 pix-
els) and rotation (uniformly sampled between -1 to 1 de-
gree) to the original high-resolution ground truth. Next, we
apply a linear color transformation to the spatially shifted
reference image to model the color space difference be-
tween the cameras used to capture the burst, and the HR
reference. The color transformation is applied before clip-
ping the image intensity values to be between 0 to 1, which
models saturation in cameras. Note that these are simple ap-
proximations of the real-world misalignment between cam-
eras. In practise, the spatial shift between images cannot
be modelled using a simple rigid transformation due to per-
spective changes caused by differences in focal lengths [12].
Furthermore, the color space mapping between two cameras
can be non-linear, and depend on the scene illumination.

We generate the training bursts using the sRGB images
from the training split of Zurich Raw to RGB dataset [6].



The test set, containing 200 bursts, is generated using
the sRGB images from the test split of Zurich Raw to
RGB dataset. Note that for we provide accurately aligned
groundtruth for the test bursts for quantitative evaluation.
Both the training and test bursts contain 16 96 × 96 Raw
images.

3. Details about comparison on SynBSR in Sec.
4.1

Training details: For each network architecture (DBSR,
DeepRep, BIPNet, and Burstormer), we use the official
model released by authors, trained on synthetic data as our
Synthetic data baseline model. Note that these models
are trained on synthetic bursts generated using the Bilinear
blur kernel. We then finetune the synthetic data model on
weakly-paired bursts from SynBSR for 60k iterations, using
the aligned L1 loss introduced in [1] to obtain the weakly-
paired baseline. For the models trained using our self-
supervised approach, we also start with the official models
trained on synthetic data. These models are finetuned for
60k iterations using our self-supervision loss. We start with
a base learning rate of 10−4 for the burst SR model, which
is reduced by a factor of 5 after 20k iterations. We initial-
ize the blur kernel with an Isotropic Gaussian with standard
deviation of 1.8 pixels. The blur kernel is trained with an
initial learning rate of 10−3, which is reduced by a factor of
5 after 20k and 40k iterations.
Evaluation details: Since a perfectly aligned ground truth
is available in our synthetic setup, we use the fidelity based
metrics PSNR and SSIM [8] and the perceptual metric
LPIPS [11] for evaluating the methods. Due to the train-
ing on misaligned data using explicit alignment, we found
that the network trained using weakly-paired method can
introduce global spatial shifts in the predictions. If not ac-
counted for, these spatial shifts can lead to very low PSNR.
In order to not penalize the method for these global shifts,
we first compute a per-image global translation between the
network prediction and the ground truth for the weakly-
paired trained network. The performance metrics are com-
puted after aligning the prediction to the ground truth using
the estimated global translation. The boundary regions (40
pixels on each side) are omitted when computing the per-
formance metrics for all the methods.

4. Details about the comparison on BurstSR in
Sec. 4.1

We train our models on the Raw bursts from the
BurstSR [1] dataset. The dataset contains bursts captured
from a smarthphone camera, along with a corresponding
high-resolution reference captured using a DSLR camera
with optical zoom. We use the pre-processed version of
the dataset which contains 160 × 160 crops extracted from

the central region of the images which cover the same field
of view as the DSLR high-resolution reference. This en-
sures that we use the same inputs bursts for training as the
weakly-paired training approach, which utilizes the DSLR
reference. However, unlike the weakly-paired approach,
our method is not restricted to only using the central crops
since we do not use any high-resolution reference images
for training.

For each model architecture, we use the official model
released by authors, trained on synthetic data and BurstSR
dataset as our Synthetic data and Weakly-paired baseline
models, respectively. For the models trained using our self-
supervised approach, we also start with the official models
trained on synthetic data. These models are finetuned us-
ing our self-supervision loss. We initialize the blur kernel
with an Isotropic Gaussian with standard deviation of 2.25
pixels.

5. Details about generalization to other sensor
(Sec. 4.2)

We train a DeepRep [2] using the 77 bursts captured us-
ing the Nexus 6 camera from the HDR+ dataset [5]. The
bursts from the HDR+ dataset contain varying number of
images (2-10). We only utilize bursts containing at least 9
images for training. We use K = 6 of the images as input
to the burst SR model, while 3 images are used to compute
the self-supervision loss. We use the network pre-trained
on the BurstSR dataset using our self-supervised loss as our
initial model. This model is then finetuned for 40k itera-
tions on the HDR+ bursts, using a batch size of 5. We use
an initial learning rate of 10−4 for the burst SR model, and
10−3 for the blur kernel parameters. The learning rate is
reduced by a factor of 5 after 20k iterations. We use crops
of resolution 112 × 112 for training. During training, we
discard textureless crops, i.e. crops with very low variance,
since these groups do not sufficient provide supervision for
super-resolution.

6. Details about synthetic experiments in Sec.
4.3

Here, we provide more details about our experiments on
synthetic data, presented in Section 4.3 in the main paper.

6.1. Data Generation

We use the pipeline introduced in [1] to generate syn-
thetic bursts for our experiments. We use the default param-
eters utilized in [1] for our inverse camera pipeline, and to
simulate camera motion. The different blur kernels utilized
in our data distributions are described next.
Unit Impulse: We use a 9× 9 kernel with a weight of 1.0
in the central location, and 0.0 everywhere else.
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Figure 1: Evolution of training loss and performance on test
set (in terms of PSNR) with number of training iterations.

Isotropic Gaussian: We use a 9× 9 kernel representing a
discritized isotropic 2D Gaussian with a standard deviation
of 0.9 pixels.
Anisotropic Gaussian: We use a 9×9 kernel representing
a discritized anisotropic 2D Gaussian with a standard devi-
ation of 0.45 and 1.35 pixels along the two-axes, oriented at
45 degrees w.r.t. the X-axis.

We employ the commonly used camera noise model con-
sisting of a read noise and the shot noise [3]. This can be
modelled as a heteroscedastic Gaussian noise with a vari-
ance σ2

read + σshotx, where σ2
read and σshot are the read and

shot noise parameters, respectively. x denotes the clean
pixel value. Next, we describe the read and shot noise pa-
rameter utilized in the different data distributions in our ex-
periments.
Read & Shot, Mix: We use the similar noise distribution as
in [3]. The shot noise level σshot is sampled uniformly in the
log-domain from the range [0.0001, 0.01], while the read
noise level σ2

read is sampled in the log-domain from a normal
distribution log(σ2

read) ∼ N (2.18log(σshot) + 1.2, 0.26).
Read & Shot, Fixed: We use fixed noise levels with the
shot noise parameter set to σshot = 0.001, and the read noise
parameter set to σ2

read = 9.57 · 10−7.
Only Read, Fixed: We use fixed noise levels with the shot
noise parameter set to σshot = 0.0, and the read noise pa-
rameter set to σ2

read = 0.0002.

6.2. Network Architecture

We utilize the DeepRep architecture introduced in [2]
for our experiments. We use a smaller variant of the model
used in [2] for the 2× super-resolution task. In particular,
we an encoder network consisting of 5 residual blocks with
32 channels each. The encoder output is mapped to a 128
dimensional embedding space. We use a single iteration in

our optimizer module to minimize the reconstruction error,
instead of 3 employed in [2]. The output of the optimizer
is a 64 dimensional feature map. This is processed by 3
residual blocks, upsampled by a factor of 2 using bilinear
interpolation followed by a convolution layer. The resulting
32 channel feature map is further processed by 3 residual
blocks to generate the output RGB image.

For our oracle single-image super-resolution (Fully Sup.
SISR) network, we use a residual network with bilinear up-
sampling, with a similar depth as the burst super-resolution
network.

6.3. Training details

We train our networks using the synthetic bursts gener-
ated using sRGB images from the training split of Zurich
Raw to RGB dataset [6]. We use bursts containing 14
128 × 128 Raw images for training. During our training,
we use K = 8 input images as the model input Bmodel,
while the remaining 6 images are used for computing the
self-supervision loss. We train our networks with a batch
size of 12, for 160k iterations. We start with a base learning
rate of 10−4, which is reduced by a factor of 5 after 100k
and 140k iterations.

When learning the blur kernel k along with the burst SR
network, we empirically found it beneficial to first train only
the burst SR model using a fixed Unit Impulse blur kernel,
and then jointly learn both the kernel and the SR model.
Thus, we train our model first for 60k iterations with a fixed
Unit Impulse blur kernel. Next, we initialize the blur ker-
nel to a wide isotropic Gaussian, and jointly train the blur
kernel, as well as the model parameters. We use a 10 times
higher learning rate (i.e. base learning rate of 10−3) for the
blur kernel parameters, as compared to the burst SR model
parameters. For the data distributions generated using the
Unit Impulse, and the Anisotropic Gaussian, we initialize
the blur kernel with a standard deviation of 0.9 pixels. In
order to ensure that we do not initialize the blur kernel to
the ground truth, we use a standard deviation of 1.35 pixels
when initializing the kernel for the Isotropic Gaussian data
distribution.

6.4. Evaluation details

For each of the 5 data distributions, we evaluate the
trained models on corresponding test datasets. The test
bursts are synthetically generated in the same manner as the
training bursts. We use the sRGB images from the test split
of the Zurich Raw to RGB dataset [6] to generate the test
bursts. Our test datasets contain 200 bursts containing 14
200× 200 Raw images each.

7. Analysis of training convergence
Here, we analyse how the network performance evolves

during training. Our analysis is performed on the synthetic
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Figure 2: Evolution of network prediction with respect to the number of training iterations. The network predictions have
large color shifts in the initial training iterations. As the training progresses, the network results become sharper and it can
recover more details.

bursts generated using the Isotropic Gaussian kernel and
mixed read and shot noise (see Section 6.1). In Figure 1,
we plot the training loss, as well as the performance on the

test set (in terms of PSNR) for different number of training
iterations. Note that we start with randomly initialized net-
work. We keep the blur kernel k fixed during the first 60k



training iterations, and finetune it with the rest of the model
parameters thereafter. This leads to a substantial PSNR im-
provement between the models trained for 32k and 64k it-
erations. Both the training loss, as well as the test set per-
formance, converge in 160k iterations.

A visual comparison between networks trained for dif-
ferent number of iterations if provided in Figure 2. We ob-
serve that the network predictions have large color shifts in
the initial training iterations. These color shifts are largely
fixed by 4k training iterations. The early predictions are also
more blurry due to the use of incorrect blur kernel k. As the
training progresses, the network results become sharper and
it can recover more details, e.g. the window blinds.

8. Additional analysis of motion estimation
In Section 3.3 in the main paper, we detail how the mo-

tion between two frames is estimated when computing our
self-supervision loss. Here, we analyse the impact of error
in the motion estimation. Our experiments are performed
on the synthetic bursts generated using the Isotropic Gaus-
sian kernel and mixed read and shot noise. We use the same
model as employed in Section 4.1 in the main paper. We
also assume that the blur kernel k is known for this analy-
sis.

In order to analyse the impact of motion estimation er-
ror, we start with the ground truth motion between frames
and add independent Gaussian noise to the per-pixel flow
vectors. The results obtained using varying amounts of
noise are shown in Table 1. In particular, we add Gaussian
noise with standard deviations of 0.1, 0.2, 0.5, 1.0, 2.0, and
5.0 pixels. We also include the results obtained using the
ground truth motion, as well as estimated motion, for com-
parison. The results show the our approach can handle small
amount of error in the motion estimation (< 0.2 pixels)
without any degradation in performance. However, larger
errors can lead to substantial decrease in performance.

9. Additional qualitative results on BurstSR
dataset

In Figure 4 and 5 in the main paper, we provide a qual-
itative comparison of our self-supervised training approach
with alternative methods. In Figure 3, we provide more
qualitative examples on the BurstSR dataset [1], using the
DeepRep architecture [2]. Our approach obtained compa-
rable results to the weakly-paired alternative, despite us-
ing only low-resolution noisy bursts for training. A similar
comparison using the BIPNet architecture [4] is provided in
Figure 4.

10. Results in linear camera color space
All our networks are trained to generate predictions in

the same color space as the camera. In all our qualitative

results on the real-world bursts, we use Adobe Camera Raw
to postprocess these predictions in order to generate sRGB
images for visual comparison. This entails applying camera
white balance and converting to linear RGB color space,
followed by tone mapping, gamma correction, and bright-
ness adjustment. We additionally perform some sharpening
to generate visually pleasing results. For each method, we
use the same set of manually tuned “slider” parameters for
all the images.

Here, we present qualitative results in the linear camera
color space, after performing white balance. We compare
our self-supervised training approach with the supervised
synthetic and real data training alternatives on the BurstSR
dataset. The results are shown in Figure 5. Compared to
the weakly-paired training approach, the results of our self-
supervised training are softer, with less contrast. As shown
in the main paper (Figure 5), this can be addressed with
simple post-processing to generate visually pleasing results.
Crucially, we observe that our self-supervised approach can
recover most of the image details, similar to the weakly-
paired training approach. Furthermore, we notice that the
network trained using weakly-paired real data introduces
noticeable color shifts, compared to the results of both the
synthetic data training, as well as the self-supervised train-
ing approaches. We believe that this is due to the use of
high-resolution DSLR images as ground truth. While the
DSLR images captured using a zoom lens are sharper, they
lie in different color space compared to the burst images,
due to the differences in the imaging sensors.

11. Qualitative results for synthetic experi-
ments

Here, we provide a qualitative comparison between the
different models analysed on the synthetic data in Section
4.3 of the main paper. The results are shown in Figure 6
for the data distribution generated using the isotropic Gaus-
sian kernel, with mixed read and shot noise. Our approach
obtains results comparable to the fully-supervised training
approach, even when the blur kernel k and motion m are
unknown and estimated. Note that our approach obtains
significantly better results compared to the single image SR
network trained in a fully-supervised manner. This demon-
strates that we can learn to effectively fuse information from
the input burst to recover the high resolution details, despite
using only low-resolution bursts for training.

12. Limitation and discussion
Our image formation model jointly learns a lens blur

kernel that is spatially-invariant and fixed for images cap-
tured with the same device. This is a common assumption
in super-resolution literature [9, 10]. One could extend our
method to learn a spatially-varying blur kernel by changing



Ground truth m Noisy m, std. 0.1 Noisy m, std. 0.2 Noisy m, std. 0.5 Noisy m, std. 1.0 Noisy m, std, 2.0 Noisy m, std. 5.0 Estimated m

36.765 36.854 36.625 36.106 34.800 31.612 27.100 36.347

Table 1: Impact of error in motion estimation. The experiments are performed on synthetic bursts. In order to obtain noisy
motion estimates, we add Gaussian noise with varying noise levels to the ground truth motion vectors. The results show that
our approach can provide good results when the motion estimation error is small (< 0.2 pixels).

our parameterization of the blur kernel. Furthermore, we
do not model any motion blur, which may limit the perfor-
mance of the model. Extending our approach to incorporate
spatially varying blur is an interesting future work.

Another future direction is to integrate additional super-
vision in the form of unpaired high-resolution images, us-
ing e.g. adversarial training. This could help the network to
learn to generate visually pleasing sharp images. Another
issue that we observe in our results is that our method can
introduce some artifacts near over-exposed regions. Note
that our image formation model described in Section 3.1 in
the main paper is not valid for over-exposed regions due to
clipping in the sensor. Thus, it is hard to get reliable super-
vision around over-exposed regions in our training. This
could also be addressed using an adversarial loss on the
high-resolution outputs.
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Burst image Supervised, synthetic Supervised, weakly-paired real Self-Supervised (Ours)
Figure 3: Comparison of our self-supervised training approach with supervised training alternatives using synthetic and
weakly-paired real data on the BurstSR dataset [1] using the DeepRep architecture [2]. The network trained using synthetic
data cannot handle dynamic objects, introducing severe artifacts. Our self-supervised training approach using only the noisy
bursts for training obtains promising results, comparable to the weakly-paired alternative which relies on the availability of
high-resolution reference images for each burst.
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Figure 4: Comparison of our self-supervised training approach with supervised training alternatives using synthetic and
weakly-paired real data on the BurstSR dataset [1] using the BIPNet architecture [4]. The network trained using synthetic
data introduces severe artifacts due to domain shift. The network trained using the weakly-paired approach on real data
provides good results. However such a training strategy requires aligned high-resolution references for each training burst,
which are cubmersome to collect. Furthermore, it can introduce some color shifts since it is trained using the high-resolution
image captured using a different camera, with a different color response. Our self-supervised training approach provides
promising results, despite being trained using only low-resolution noisy bursts.



Burst image Supervised, synthetic Supervised, real Self-Supervised (Ours)
Figure 5: Comparison of our self-supervised training approach with supervised training alternatives using synthetic and
weakly-paired real data on the BurstSR dataset [1] using the DeepRep architecture [2]. The results are shown in the linear
camera color space, before any postprocessing. While being a bit softer, the results of our approach contain most of the image
details compared to the weakly-paired training approach. As shown in the results in the main paper (Figure 5), the softness
of our results can be easily addressed using standard post-processing techniques.
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Figure 6: Qualitative analysis of our self-supervised training approach. The results are shown for the data distribution gen-
erated using the isotropic Gaussian kernel, with mixed read and shot noise. The model trained using our self-supervised ap-
proach with unknown blur kernel k and motion m (last column) obtains promising results, comparable to the fully-supervised
alternative (second column). Compared to the single image SR model trained in a fully-supervised manner (first column), our
self-supervised burst SR model can recover more details. We observe that using a fixed, incorrect kernel for self-supervised
training can lead to poor results (fifth column).


