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Detailed Taxonomy We discuss a detailed taxonomy of
multi-task learning approaches in Table 1 extending those
provided in Table 1 of the main paper.

1. Additional Quantitative Results
1.1. Multitask Learning: Effect of Backbones

We report our MTL experiments on the NYUDv2 [17]
dataset in Table 2, where we also integrate the best-
performing models with the same vision transformer back-
bones such as Swin [12], ViT [8], Pyramid Transformer
(PVTv2-B5) [31], and Focal Transformer (Focal-B) [33]
for a fair comparison. Further, in Table 4 we evaluate
the methods on additional datasets such as Synthia [23]
and Vkitti2 [3]. Our method outperforms all the base-
lines, showing the benefit of leveraging task-adapted at-
tention instead of using attention from a single task, as
done in the second-best performing model of MulT [1].
This corroborates the trend seen across Taskonomy [39] and
Cityscapes [7] in Table 2 of the main paper. Furthermore,
we show that the task performances consistently improve
with the addition of more tasks, signifying the benefit of in-
jecting additional geometrical cues to help the other tasks.

Note that all the methods are initialized with pre-trained
ImageNet-22K weights.

Our method with the Swin backbone [12] shows the best
performance. We, thus, choose to report the results with the
Swin backbone in the main paper. Note that Swin is the
most widely used model for dense prediction and its archi-
tecture compares with the hierarchical architecture of CNN-
based baselines in Tables 2 and 4.
1.2. Zero-Shot Task Transfer

Although we have shown experiments on dense tasks
throughout our paper, note that our model is not restricted
to just dense tasks. In Table 3, we report our model’s per-
formance for the zero-shot image captioning task (IC) on
’noCaps out-of-domain’ benchmark. Following the typi-
cal zero-shot task transfer setting, our model is trained with
segmentation and captions from Coco and applied to no-
Caps for zero-shot IC. For training, we follow the GIT [30]
text decoder configuration. During training on Coco, we en-
force the highest similarity between the TAA token and the
text decoder output token. On noCaps, we achieve compa-
rable IC performance to GIT using a quarter #params.

1.3. Unsupervised Domain Adaptation

In Figure 1, we illustrate the architecture employed for
our UDA setting that makes use of the adversarial learn-
ing scheme in [24]. We align the source and the target do-
mains by applying a task-head discriminator. The alignment
is done at the final output-levels for both segmentation and
depth in order to preserve the architecture of our original
model. In Table 5, we report additional UDA results with
the source domain as Synthia [23] and the target domain
as Cityscapes [7]. Following the same trend as seen in Ta-
ble 4 of the main paper, we outperform both the ResNet-
50 (CNN) baselines as well as the Swin-B V2 transformer
baselines.

1.4. Generalization

We study the generalizability of our method to the
comics domain [18] when the network is trained on MS-



Architecture Task-affinity generalization

Methods Encoder-focused Decoder-focused Attention Task-loss MTL Task-transfer UDA Novel domain

CNN-based

MTL-baseline [28] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Consistency [38] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
XTAM [13] ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗
TAWT [5] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗
Cross-stitch [15] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
MTAN [11] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
MTI-Net [29] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
TSwitch [27] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗
Grad-norm [6] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
PCGrad [37] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
TTNet [19] ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
PAD-Net [32] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗
Taskonomy [39] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Taskgrouping [26] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗
ATRC [2] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Vision Transformer-based

IPT [4] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
ST-MTL [16] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Vid-MTL [25] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
UniT [9] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
InvPT [35] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Taskprompter [36] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
MulT [1] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗
Our ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A detailed taxonomy of MTL methods (c.f. Table 1 main paper).

Figure 1: UDA architecture for our method with output-level adversarial learning. Arrows indicating data flows are drawn
in either red (source), blue (target), or a mix (both). Domain Discriminators (shown as yellow triangles) are jointly trained
with our multitask model.

Coco [10] dataset and is no fine-tuned to the DCM comics
dataset. Shown in Table 6, our model outperforms both the
ResNet-50 (CNN) baselines as well as the Swin-B V2 trans-
former baselines.

2. Additional Experimental Details
2.1. Datasets

We evaluate our method on the following datasets.
Taskonomy [39] comprises 4 million real images of indoor
scenes with multi-task annotations for each image. The ex-
periments were performed using the following 4 tasks from
the dataset: semantic segmentation, depth (zbuffer), surface
normals, and 2D (Sobel) texture edges. The tasks were se-
lected to cover both geometric and semantic-based cues and
have sensor-based/semantic ground truth. We report results
on the official test set.
NYUDv2 [17] consists of sequences of RGB images, depth

recorded by a Kinect camera, and dense labeling for se-
mantic segmentation covering 894 classes. Officially, 249
scenes are reserved for training (for a total amount of 240k
frames) and 215 scenes are reserved for testing. We use the
official train-test split for our evaluations.
Cityscapes [7] consists of 5000 images with semantic anno-
tations for 30 classes, grouped into 8 categories. For depth,
we use depth from semi-global matching as depth labels.
We estimate surface normal labels from the depth maps fol-
lowing [34].
Vkitti2 [3] contains 50 high-resolution monocular videos
(21,260 frames) generated from five different virtual
worlds. These photo-realistic synthetic videos are densely,
exactly, and fully annotated with semantic segmentation (14
classes) and depth labels.
Synthia [23] contains synthetic images of 9400 multi-
viewpoint photo-realistic frames rendered from a virtual
city. We use pixel-level semantic annotations for 16 classes



Quantitative results on NYUDv2 [17]
’S-D’ ’S-D-N’ ’S-D-N-E’

Methods SemSeg
mIoU%↑

Depth
RMSE↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr.↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr. ↓

Edges
F1%↑

ResNet-50 (CNN) backbone

MTL-baseline [28] 44.40 0.5870 44.61 0.5790 28.34 45.26 0.5407 25.79 76.07
Cross-stitch [15] 44.20 0.5900 44.40 0.5850 28.57 45.04 0.5500 26.11 76.00
MTAN [11] 45.00 0.5840 45.04 0.5490 27.85 45.50 0.5263 25.62 76.18
TTNet [19] 45.12 0.5730 45.16 0.5400 25.80 46.00 0.5217 24.58 76.20
Taskonomy [39] 44.33 0.5890 44.52 0.5820 28.47 45.10 0.5433 25.94 76.12
TSwitch [27] 47.04 0.5581 47.55 0.5270 24.02 47.99 0.5151 25.40 76.34
Consistency [38] 45.38 0.5627 46.14 0.5360 24.73 46.79 0.5204 25.58 76.30
ATRC [2] 46.77 0.5436 47.18 0.5195 23.30 47.56 0.5167 22.11 76.58
XTAM [13] 46.90 0.5372 47.24 0.5177 22.73 48.80 0.5150 22.39 76.88
TAWT [5] 47.02 0.5330 47.29 0.5152 22.69 48.87 0.5146 22.30 76.90

HRNet-48 (CNN) backbone MTI-Net [29] 49.00 0.5290 49.52 0.5050 20.24 49.88 0.4940 20.13 76.95

Swin-B V2 [12] transformer backbone

ATRC [2] 49.11 0.5273 49.55 0.5034 20.36 50.40 0.4978 20.06 77.11
XTAM [13] 49.25 0.5251 50.13 0.5008 20.19 50.55 0.4977 19.50 77.30
TAWT [5] 49.33 0.5242 50.20 0.5001 20.10 50.71 0.4955 19.28 77.35
MTI-Net [29] 49.33 0.5180 49.81 0.4990 20.15 50.38 0.4933 19.08 77.95
ST-MTL [16] 49.84 0.5178 52.68 0.4975 19.82 53.72 0.4924 18.19 78.10
InvPT [35] 51.59 0.5166 52.94 0.4960 19.15 54.37 0.4906 18.08 78.61
Taskprompter [36] 53.27 0.5150 54.04 0.4951 18.88 55.34 0.4888 18.00 78.71
MulT [1] 53.48 0.5130 54.17 0.4937 18.72 55.89 0.4885 17.97 78.65
Our 53.61 0.5111 54.80 0.4922 18.63 56.13 0.4861 17.50 80.03

ViT-B [8] transformer backbone

ATRC [2] 48.49 0.5285 49.38 0.5050 20.52 50.25 0.4991 20.20 76.91
XTAM [13] 49.11 0.5265 49.94 0.5024 20.29 50.39 0.4987 19.61 77.17
TAWT [5] 49.15 0.5255 50.00 0.5022 20.19 50.54 0.4968 19.40 77.22
MTI-Net [29] 49.24 0.5192 49.70 0.4997 20.21 50.25 0.4938 19.21 77.80
ST-MTL [16] 49.72 0.5187 52.54 0.4988 19.96 53.57 0.4936 18.25 77.97
InvPT [35] 51.49 0.5177 52.83 0.4974 19.33 54.23 0.4920 18.21 78.44
Taskprompter [36] 53.22 0.5164 53.92 0.4966 19.00 55.30 0.4910 18.19 78.56
MulT [1] 53.33 0.5148 54.00 0.4955 18.91 55.81 0.4901 18.13 78.50
Our 53.47 0.5123 54.68 0.4937 18.75 56.00 0.4872 17.57 79.83

PVTv2-B5 [31] transfomer backbone

ATRC [2] 49.00 0.5280 49.47 0.5043 20.46 50.33 0.4986 20.14 77.00
XTAM [13] 49.17 0.5258 50.03 0.5019 20.25 50.45 0.4983 19.58 77.20
TAWT [5] 49.22 0.5250 50.11 0.5017 20.13 50.60 0.4963 19.37 77.27
MTI-Net [29] 49.26 0.5189 49.72 0.4995 20.20 50.29 0.4938 19.18 77.83
ST-MTL [16] 49.77 0.5185 52.60 0.4983 19.91 53.62 0.4934 18.22 78.02
InvPT [35] 51.53 0.5172 52.88 0.4969 19.27 54.29 0.4915 18.18 78.50
Taskprompter [36] 53.25 0.5161 54.00 0.4960 18.96 55.33 0.4904 18.14 78.60
MulT [1] 53.37 0.5144 54.04 0.4950 18.87 55.85 0.4898 18.11 78.55
Our 53.53 0.5117 54.72 0.4934 18.71 56.05 0.4869 17.55 79.88

Focal-B [33] transformer backbone

ATRC [2] 49.09 0.5277 49.50 0.5038 20.42 50.39 0.4982 20.10 77.07
XTAM [13] 49.20 0.5253 50.07 0.5010 20.22 50.51 0.4981 19.53 77.26
TAWT [5] 49.28 0.5247 50.15 0.5011 20.11 50.66 0.4960 19.32 77.31
MTI-Net [29] 49.29 0.5186 49.77 0.4992 20.19 50.33 0.4938 19.15 77.88
ST-MTL [16] 49.80 0.5181 52.64 0.4980 19.87 53.66 0.4930 18.26 78.06
InvPT [35] 51.56 0.5168 52.90 0.4965 19.22 54.33 0.4913 18.15 78.56
Taskprompter [36] 53.26 0.5158 54.02 0.4955 18.93 55.36 0.4892 18.07 78.73
MulT [1] 53.40 0.5137 54.11 0.4944 18.80 55.90 0.4890 18.03 78.68
Our 53.57 0.5115 54.75 0.4933 18.68 56.07 0.4867 17.52 79.91

Table 2: Multitask learning results on the NYUDv2 [17] benchmark for different multitask settings of ’S-D’, ’S-D-N’, and
’S-D-N-E’. Our model consistently outperforms both the CNN-based and vision transformer-based baselines. Adding more
tasks improves their respective performances based on their task affinities. Bold and underlined values show the best and
second-best results, respectively.

Method Pretraining #Params METEOR↑ CIDEr↑ SPICE↑
GIT 800M image & text 700M 30.45 122.04 15.70
Ours ImageNet-22K only 163M 29.82 119.93 13.13

Table 3: Zero-Shot Task Transfer results for Image Cap-
tioning on the noCaps out-of-domain benchmark. Our
model is comparable in performance to GIT [30] while us-
ing a quarter number of parameters.

and depth labels from Synthia’s RAND-Cityscapes-CVPR-
2016 benchmark as used in [13].

MS-Coco [10] comprises 164k training images that span
over 80 categories with semantic segmentation annotations.
For depth, normal, and edge we use pseudo-labels from
[21, 34, 20], respectively. We use the MS-Coco dataset
to evaluate if the models generalize to novel domains like
comics which comprise data categories like ’faces’ and ’an-
imals’.
DCM [18] is a comics dataset comprising 772 full-page im-
ages with multiple comics panel images within. We use
these images as test images from a novel domain for our ad-
ditional experiments in the generalization to novel domains



setting.

2.2. Baselines

The baselines for our evaluation are described below. To
prevent confounding factors, all baselines in the main pa-
per (Tables 2-6) were implemented using the training pro-
cedure and the best model configurations as outlined in their
respective works. Additionally, as shown in Table 2, we re-
port the best-performing CNN-based baselines on the same
transformer backbone architectures.

2.2.1 CNN-based Methods

MTL-baseline [28]: This is a naive multi-task learning net-
work with one shared encoder and multiple task-specific de-
coders based on a ResNet-50 backbone.
Cross-stitch [15]: introduced soft-parameter sharing in
deep MTL architectures. Being a ResNet-50 encoder-
focused method that can achieve task transfer learning, we
use this baseline for comparison.
MTAN [11]: used an attention mechanism to share a gen-
eral feature pool amongst the task-specific networks. Being
an encoder-focused method, we use this baseline for com-
parison.
TSwitch [27]: We use this as a baseline for comparison,
as it uses a task embedding network to learn task-specific
conditioning parameters that encourages constructive inter-
action between tasks in a pairwise manner.
TTNet [19]: presents a meta-learning algorithm that re-
gresses model parameters for novel tasks for which no
ground truth is available (zero-shot tasks).
Taskonomy [39]: We use this as a baseline as Taskonomy
studies the relationships between multiple visual tasks for
task transfer learning.
MTI-Net [29]: is a multiscale distillation procedure to ex-
plicitly model the unique task interactions that happen at
each individual scale. We use MTI-Net with HRNet-48 as
a baseline. Additionally, we compare MTI-Net with the the
different transformer backbones.
Consistency [38]: This work presents a data-driven frame-
work for augmenting standard multi-task learning with a
cross-task consistency constraint, which is learned over a
graph of arbitrary tasks.
TAWT [5]: This method uses gradient-loss to find optimal
task representations to perform multi-task learning. TAWT
shows that learning task representations in the encoder ben-
efits multi-task learning. Being an encoder-focused method
that can achieve task transfer learning, we use this baseline
for comparison.
XTAM [13]: exploits correlation-guided attention between
task pairs to enhance the average representation learning for
all tasks. We use this baseline for comparison as it investi-
gates the problem of MTL and UDA.
Adaptive Task-Relational Context (ATRC) [2]: leverages

pairwise task similarities to create attention gates for global
cross-task message passing.

Quantitative results on Synthia [23]
’S-D’ ’S-D-N’

Methods SemSeg
mIoU%↑

Depth
RMSE↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr.↓

ResNet-50 backbone

MTL-baseline [28] 69.83 5.166 72.27 4.949 19.28
Cross-stitch [15] 69.00 5.228 71.80 5.085 21.05
MTAN [11] 77.42 4.285 77.90 4.298 17.48
TTNet [19] 77.51 4.270 78.00 4.266 17.54
Taskonomy [39] 69.40 5.209 72.16 4.974 20.09
TSwitch [27] 78.01 4.255 78.42 4.200 17.05
Consistency [38] 77.95 4.263 78.37 4.209 17.28
XTAM [13] 80.53 4.222 82.99 4.088 14.46
TAWT [5] 80.87 4.161 83.03 4.056 14.30

Swin-B V2 backbone

XTAM [13] 81.70 4.199 83.40 4.040 14.00
TAWT [5] 81.91 4.118 83.75 4.000 13.66
ST-MTL [16] 82.48 4.001 85.02 3.808 13.49
MulT [1] 83.04 3.883 86.90 3.662 13.27
Our 85.13 3.695 88.50 3.476 13.10

ViT-B backbone

XTAM [13] 81.50 4.207 83.32 4.049 14.08
TAWT [5] 81.82 4.133 83.66 4.012 13.80
ST-MTL [16] 82.37 4.009 84.00 3.851 13.61
MulT [1] 82.90 3.892 86.82 3.689 13.35
Our 85.00 3.707 88.35 3.487 13.22

Quantitative results on VKITTI2 [3]

ResNet-50 backbone

MTL-baseline [28] 87.75 5.511 88.86 5.312 22.27
Cross-stitch [15] 86.11 5.719 87.50 5.505 23.03
MTAN [11] 89.00 4.425 90.00 4.197 20.66
TTNet [19] 89.13 4.440 90.11 4.188 20.52
Taskonomy [39] 87.52 5.517 88.61 5.400 22.70
TSwitch [27] 89.63 4.399 92.13 4.155 19.00
Consistency [38] 89.25 4.461 90.75 4.180 19.37
XTAM [13] 93.20 4.274 95.44 4.020 17.00
TAWT [5] 93.41 4.202 95.96 3.991 16.76

Swin-B V2 backbone

XTAM [13] 96.93 3.425 97.58 3.092 14.49
TAWT [5] 97.52 3.385 97.92 3.061 14.41
ST-MTL [16] 97.91 3.365 98.22 3.040 14.08
MulT [1] 98.03 3.341 98.75 3.015 13.95
Our 98.51 3.297 99.00 2.881 13.02

ViT-B backbone

XTAM [13] 96.80 3.433 97.41 3.099 14.57
TAWT [5] 97.40 3.391 97.81 3.065 14.55
ST-MTL [16] 97.80 3.372 98.13 3.049 14.16
MulT [1] 98.00 3.349 98.66 3.024 14.05
Our 98.43 3.303 98.89 2.890 13.13

Table 4: Multitask learning results on the Synthia [23]
(Top) and Vkitti2 [3] (Bottom) benchmark, respectively.
Our method consistently outperforms all the ResNet-
50 backbone-based MTL methods and the Swin-B V2
backbone-based methods. We also alternate the ResNet-
50 backbone and the Swin-B V2 backbone with the ViT-B
backbone for the best-performing methods. Bold and un-
derlined values show the best and second-best results, re-
spectively.

2.2.2 Transformer-based Methods

ST-MTL [16]: Leveraging vision transformers, this method
achieves dense predictions in an encoder-decoder setup.
InvPT [35]: performs simultaneous modeling of spatial po-
sitions and multiple dense prediction tasks in a unified trans-
former framework.
Taskprompter [36]: focuses on the representation learning
capability of the multitask networks by using a set of task
prompts.
MulT [1]: Based on the Swin backbone, MulT uses a
shared attention mechanism from a reference task that mod-



els the dependencies across the tasks in an end-to-end trans-
former framework.
Vanilla MTL Swin [12]: The Vanilla MTL Swin is based
on the vanilla Swin-B V2 network with a single encoder and
four shared decoders and task-specific heads.
1-task Swin [12]: We compare our performance against
single-task learning networks using the baseline Swin-B V2
backbone, where each task is predicted separately by a ded-
icated Swin-B V2 network. This baseline is used as an Ora-
cle in our Unsupervised Domain Adaptation (UDA) setting.

2.3. Metrics

We report the performances of all the models by using
four task-specific metrics as follows:
Semantic segmentation uses mIoU as the average of the
per-class Intersection over Union (%) between the ground-
truth segmentation and predicted map.
Depth uses the Root Mean Square Error (RMSE) computed
between the depth label and the predicted depth map, where
the RMSE metric is reported in meters over the evaluated
set of images.
Normal estimation uses the absolute angle error in degrees
(mErr) between the normal ground-truth label and normal
estimation map.
Edge estimation uses the F1-score between the ground-
truth edges and the predicted edge maps.

2.4. Training Details

We train all the multi-tasking models with the Adam op-
timizer [14] with β1 = 0.9 and β2 = 0.98; learning rate of
5.0e− 5 and a warm-up cosine learning rate schedule. The
number of warmup epoch is 5 out of the total 30 training
epochs. We report the average over 3 runs. We use 4 A100
40 GB GPUs for training our MTL model.

Synthia [23]−→Cityscapes [7] ’S-D’

Methods MTL SemSeg
mIoU%↑

Depth
RMSE↓

CNN
MTL-baseline-UDA [28] ✓ 17.26 14.85
Consistency-UDA [38] ✓ 34.19 12.84
XTAM-UDA [13] ✓ 37.93 11.66

Transformer

1-task Swin-UDA [22] ✗ 39.00 11.03
MulT-UDA [1] ✓ 42.12 09.55
Our-UDA ✓ 50.03 06.99
1-task Swin-target (Oracle) [12] ✗ 75.97 06.65

Table 5: Unsupervised Domain Adaptation (UDA) results
for Synthia [23]→Cityscapes [7]. Our model outperforms
all the baselines. Bold and underlined values show the best
and second-best results, respectively.

3. Visualizing Task-adapted Attention (TAA)
We visualize the task-adapted attention for each tasks in

the ’S-D-N-E’ setting and show that it differs from the ex-
isting self-attention mechanism in Figure 2. TAA is more

Methods MTL SemSeg
mIoU%↑

Depth
RMSE↓

CNN Consistency [38] ✓ 18.22 1.884
XTAM [13] ✓ 18.63 1.795

Transformer

1-task Swin [12] ✗ 20.76 1.508
ST-MTL ✓ 22.49 1.446
MulT [1] ✓ 24.02 1.300
Our ✓ 27.11 1.182

Table 6: Generalization results of our model trained on
MS-Coco [10] and applied to DCM Comics [18]. Our
method outperforms all the baselines. Bold and underlined
values show the best and second-best results, respectively.

task-specific compared with self-attention, thanks to its task
conditioning from TROA. In Figure 3, we demonstrate the
effect of TAA that learns the task affinities and improves the
prediction for each task. For instance, TAA improves the
semantic segmentation performance where the bed mask is
correctly classified in our predictions as in the ground truth.
Without TAA the bed is segmented as a table.
4. Ablation Study
4.1. Effect of Different Modules of Our Network

Model
Changes

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr. ↓

Edges
F1%↑

#Parameters
(Millions)

Vanilla MTL Swin [12] 48.13 0.4956 24.53 54.88 348.0
+ TAA 59.42 0.4111 18.55 69.91 408.0

+ bottleneck 59.93 0.4066 18.08 70.32 104.0
+ TSN (Our) 60.80 0.3903 17.13 71.09 105.7

Table 7: Ablation study of the different components of
our network on the Taskonomy benchmark [39]. We show
from left to right, the performances of each added module
on multiple tasks. Our TAA and TSN components improves
the performance consistently across all the tasks while the
bottleneck reduces the number of parameters.

In Table 7, we present the results of an ablation study to
determine which component of our method has the largest
positive gain on the different task predictions. Starting from
a Swin baseline that employs the Swin encoder and task-
specific decoders as is — initialized with the pre-trained
ImageNet 22k weights — and trained using random task
sampling, we find that the task learning interferes with each
other in the absence of task-adapted attention (TAA). Note
that in this setup, the trainable encoder layers and decoder
layers are jointly trained with just the Vanilla Swin self-
attention (SA) as in [12], therefore lacking in task-adapted
attention (TAA). We then add our model’s components, one
by one, starting with TAA conditioned on the task affinity
weights from TROA. However, in this part, we do not add
the adapter bottleneck, i.e., FFup and FFdown in Figure 3
of the main paper. We then add the bottleneck and finally
add the Task-Scaled Norm (TSN). We report both the per-
formances and parameters required for each added compo-



(a) Image (b) Self-attention (c) SemSeg TAA (d) Depth TAA (e) Normal TAA (f) Edge TAA

Figure 2: Visualizing TAA versus the self-attention of the Swin-B V2 encoder layer T18. We show that TAA has more
task-specific attention compared to self-attention in the encoder. Here, our model that is used for visualization is trained on
MS-Coco [10] with depth, surface normal, and edge labels from [21, 34, 20], respectively.

Figure 3: Effect of TAA on our model. The yellow-circled
region shows how our model with TAA improves, for in-
stance, the semantic segmentation performance, where the
fan mask is correctly classified in our predictions. How-
ever, our model without TAA fails to segment the fan. Best
viewed on screen and when zoomed in.

nent. Not only does each module lift the task performances
but the introduction of the adapter bottleneck significantly
reduces the number of parameters.

Note that TAA variants with operations like Matmul or
concatenation between the A′(.) matrix and q.kT matrix are
extremely computationally expensive, scaling non-linearly
with an increase in the number of tasks. Hence, we do not
report them. Also with a TROA variant where ’w= con-
stant’ for all tasks, the model fails to leverage the task inter-
dependencies [1, 26] and defaults to self-attention that is
shifted by a constant. Failing to account for the task rela-
tionships, is not a typical multitask setting [1, 26, 38]. We,
therefore, do not report this TROA variant.

Furthermore, in Table 8, we study the effect of differ-
ent Swin V2 [12] backbones such as Swin-B and Swin-L,
different pre-trained initializations, i.e. Imagenet-1K and
Imagenet-22K, various hidden feed-forward network (FFN)
dimensions with 48 or 96 hidden dimensions, and different
bottleneck sizes for the FF down and FF up in our vision
transformer adapters. We observe that the configuration of
Swin-B backbone initialized with ImageNet-22K, an FFN
with a hidden dimension of 96 and a bottleneck dimension

of 12 achieves an improved performance across all tasks.
Other configurations with a larger Swin network, a larger
FFN dimension, and a larger bottleneck size give slight per-
formance gains but they are parametrically costly.

Effect of Adapter Placement and Number of Adapters.
In Table 9, we study the effect of varying the placement of
the vision adapters, as well as varying the overall number
of adapters in the different stages. We append adapters to
every transformer layer for a given stage. We show that
our adapters are more efficient when located later in the
encoder stages (i.e. stage 3 or 4), thereby leveraging the
richer semantics. Drawing motivation from Table 9, we
study the effect of applying the vision adapters to fewer
transformer layers as opposed to all of them, in Stage 3. In
Table 10, we apply the adapters to the later layers of stage 3,
guided by the principle of extracting richer semantics. This
configuration achieves comparable performance on all four
tasks while significantly reducing the number of parame-
ters. Therefore, we use this layout as our model, where the
adapters are applied to transformer layers 15-18 in Stage 3
and layers 1-2 in Stage 4, respectively.

5. Additional Qualitative Results
We compare the best-performing methods in the UDA

setting with the source domain as Synthia [23] and the target
domain as Cityscapes [7]. Our method outperforms all the
baselines as shown in Figure 4. We qualitatively compare
the best-generalizing methods to a novel domain of comics
for segmentation in Figure 5 and depth in Figure 6, respec-
tively.

Additionally, we qualitatively compare our model for the
multi-task learning setting with the best-performing base-
lines that utilize the same Swin-B V2 backbone. The results
in Figure 7, Figure 8, and Figure 9 show the performance of
the different networks across multiple vision tasks on the
NYUDv2 [17], Synthia [23], and Cityscapes [7], respec-
tively. Our model yields higher-quality predictions than all
the multitask baselines.
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Backbone
Size

Pre-trained
Initialization

FFN
Dimension

Bottleneck
Size

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr. ↓

Edges
F1%↑

Parameter
(in millions)

Swin-B v2

ImageNet 1K

48
8 50.52 0.4511 22.13 62.16 103.0

12 56.55 0.4230 20.39 67.03 103.6
24 56.85 0.4191 20.22 67.66 104.4

96
8 52.18 0.4410 22.04 63.60 105.2

12 58.10 0.4105 19.15 69.07 105.7
Swin-B v2 transformer 24 58.81 0.4095 19.08 69.19 109.4

ImageNet 22K

48
8 52.11 0.4392 20.88 64.29 103.0

12 58.72 0.4051 18.62 69.10 103.6
24 58.87 0.3998 18.20 69.90 104.4

96
8 54.19 0.4220 20.03 65.65 105.2

12 60.80 0.3903 17.13 71.09 105.7
24 60.83 0.3892 17.09 71.13 109.4

Swin-L V2 ImageNet 22K

48
8 52.20 0.4385 20.81 64.38 360.0

12 59.01 0.4042 18.50 69.22 364.2
Swin-L v2 transformer 24 58.92 0.3990 18.11 69.98 367.8

96
8 54.31 0.4150 19.91 65.88 380.8

12 60.89 0.3892 17.02 71.15 383.4
24 60.95 0.3880 16.90 71.33 388.0

Table 8: Ablation study for the network sizes on the Taskonomy [39] benchmark for ’S-D-N-E’ task set. We study the
effect of different Swin backbone network sizes, different pre-trained initializations, 2 different feed-forward network (FFN)
sizes, and 3 different bottleneck sizes on our model, respectively. As shown, in the grey row, we select the model which
outperforms the baselines while being parameter efficient. Note Swin-L does not have pre-trained models with ImageNet
1K.

Adapter Placement ’S-D-N-E’

Stage 1 Stage 2 Stage 3 Stage 4 SemSeg
mIoU%↑

Depth
RMSE↓

Normals
mErr. ↓

Edges
F1%↑

Parameter
(in millions)

✓ 51.05 0.4913 28.11 50.34 97.20
✓ 51.11 0.4899 27.02 54.99 94.00

✓ 58.85 0.4001 18.23 69.88 159.4
✓ 54.07 0.4412 20.95 65.77 92.60

✓ ✓ 57.81 0.4121 20.03 66.13 119.0
✓ ✓ 60.85 0.3888 17.07 71.21 163.0

✓ ✓ ✓ 60.89 0.3885 17.01 71.28 188.0
✓ ✓ ✓ ✓ 60.92 0.3884 16.98 71.31 227.0

Table 9: Ablation study for varying the placement of our adapters as well as varying the overall number of adapters
across the different Swin encoder stages. In this setting, our adapters are placed at every transformer layer for a given stage
if that stage is marked with a (✓). The grey row is not our model. The upper part shows our vision transformer adapters
perform better at later stages in the encoder (i.e. stages 3 and 4). Applying adapters to more Swin encoder stages leads to a
small boost at the cost of more parameters.

Adapter Placement ’S-D-N-E’

Stage 3 Stage 4 SemSeg
mIoU%↑

Depth
RMSE↓

Normals
mErr. ↓

Edges
F1%↑

Parameter
(in millions)

Layers 15-18 Layers 1-2 (all) 60.80 0.3903 17.13 71.09 105.7
Layers 1-18 (all) Layers 1-2 (all) 60.85 0.3888 17.07 71.21 163.0

Table 10: Ablation study for the Swin encoder stages that applies our vision adapters. We study the effect of appending
adapters to the later Swin encoder layers as opposed to all the Swin encoder layers in Stage 3. Following this setting, we
report the performances and number of parameters for the ’S-D-N-E’ setting on the Taskonomy [39] benchmark. The upper
row (our model) shows our vision transformer adapters are more parameter efficient when located in the later transformer
layers while giving a comparable performance with those reported in the bottom row. Bold and underlined values show the
best and second-best results, respectively.

grant CRSII5−180359.



Figure 4: Unsupervised Domain Adaptation (UDA) results of the best-performing methods in Table 5 on Syn-
thia [23]→Cityscapes [7]. Our model outperforms the CNN-based baseline (XTAM-UDA [13]) and the Swin-B V2-based
baselines (1-task Swin-UDA [12], MulT-UDA [1]), respectively. For instance, our method can predict the depth of the car
tail light, unlike the baselines. Best seen on screen and zoomed within the yellow circled region.



Figure 5: Generalization of our model trained on MS-Coco [10] and applied to DCM comics [18] for segmentation.
Our method outperforms both the 1-task Swin and the MTL models [16, 1], respectively. For instance, the airplane is more
accurately segmented than the one in the baselines. All the methods are based on the same Swin-B V2 backbone. We show
the best-performing methods in Table 6. Best viewed on screen and when zoomed in.

Figure 6: Generalization of our model trained on MS-Coco [10] and applied to DCM comics [18] for depth. Our method
outperforms both the 1-task Swin [12] and the MTL baselines [16, 1], respectively. For instance, our method correctly
separates the foreground depth plane from the background, unlike the baselines. All the methods are based on the same
Swin-B V2 backbone. We show the best-performing methods in Table 6. Best viewed on screen and when zoomed in.



Figure 7: Multitask Learning comparison on NYUDv2 [17] benchmark in the ’S-D-N-E’ setting. Our model outperforms
all the multitask baselines, i.e. ST-MTL [16], InvPT [35], Taskprompter [36], and MulT [1], respectively. For instance,
our model correctly segments and predicts the surface normal of the elements within the yellow-circled region, unlike the
baseline. All the methods are based on the same Swin-B V2 backbone. We show the best-performing methods in Table 2.
Best seen on screen and zoomed in.



Figure 8: Multitask Learning comparison on Synthia [23] benchmark in the ’S-D-N’ setting. Our model outperforms all
the multitask baselines. For instance, our method correctly segments the people, unlike the baselines. All the methods are
based on the same Swin-B V2 backbone. We show the best-performing methods in Table 4, i.e. XTAM [13], TAWT [5],
ST-MTL [16], and MulT [1], respectively. Best seen on screen and zoomed within the yellow circled regions.



Figure 9: Multitask Learning comparison on Cityscapes [7] benchmark in the ’S-D-N’ setting. Our model outperforms all
the multitask baselines. For instance, our method correctly segments the elements within the yellow-circled region, unlike
the baselines. We show the best-performing methods in Table 2 of the main paper, i.e. XTAM [13], TAWT [5], ST-MTL [16],
and MulT [1], respectively. Best seen on screen and zoomed in.
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