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In this document, we present the following additional in-
formation to complement the main paper:

• A description of how to acquire the dataset;
• A description of the photometric and colorimetric

quantities in sec. 2 to accompany sec. 3 to sec. 6 of
the paper;

• Additional information on the calibration, including
more details on the capture configurations and the cal-
ibration uncertainty in sec. 3 to complement sec. 3 of
the paper;

• More visualisations to explore the calibrated dataset in
sec. 4 to augment sec. 4 of the paper;

• More results for the learning tasks, including visual ex-
amples in sec. 5 to add to sec. 5 of the paper;

1. Acquiring the dataset
The dataset, released along with the paper, is avail-

able at http://www.hdrdb.com/indoor_hdr_
photometric/. Access to the complete dataset for
non-profit or educational organization is provided after a
license agreement is signed. Additionally, a sample of the
photometric dataset is directly available (100 samples at
2048× 1024 pixel resolution). The HDR data, stored in the
“.exr” file format, can be visualised using an HDR viewer
such as TEV1.

2. Photometric and colorimetric quantities
2.1. Illuminance and luminance computations

Planar illuminance The equation used to compute the il-
luminance on a plan from the luminance of the hemisphere
[2] is

Ep =

∫
Ω

L(p, ω) cos(θ)dω , (1)

where L(p, ω) is the luminance of an area (subtended by
solid angle ω) of the hemisphere Ω, and θ is the angle the
surface normal of the plane.

1https://github.com/Tom94/tev

Figure 1. To compute the illuminance of the image, the geometric
calibration of the camera is used to project the captured HDR (left)
to an orthographic projection (right).

When projecting the hemisphere on the plane with an
orthographic projection (as is shown in fig. 1), the projected
solid angle with relation to the hemispherical solid angle
corresponds to

dω⊥ = cos(θ)dω . (2)

Eq. (1) then becomes

Ep =

∫
H

L(p, ω)dω⊥ . (3)

Discretizing this equation and integrating on a planar pixel
grid of N pixels, the illuminance becomes

Ep =
π

N

∑
i∈Ω

L(i) . (4)

This is the equation used in sec. 3.1 of the main paper for
the dataset calibration as well as sec. 5 and sec. 6 for com-
puting the ground truth of illuminance prediction.

Mean spherical illuminance The mean spherical illumi-
nance (MSI) [2] is used to measure the quantity of light re-
ceived at a single point in the scene in the analysis in sec. 4.1
and is defined as

Ems =

∫
S

L(p, ω) dω , (5)

http://www.hdrdb.com/indoor_hdr_photometric/
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where L(p, ω) is the luminance of an area (subtended by
solid angle ω) of the sphere S.

Discretizing this equation over a planar pixel grid (in
equirectangular format) of N pixels gives

Ems = 4π

∑
(i)∈S′ L(i) dω(i)∑

(i)∈S′ dω(i)
, (6)

where dω(i) is the solid angle subtended by pixel i, and S′

represents the subset of valid pixels in the image2.

Average luminance For each individual light source ana-
lyzed in sec. 4.2, the average luminance is computed as

L̄ =

∫
A
L(p, ω) dω∫

A
dω

, (7)

where L is the luminance of the pixel, dω is its solid angle,
and A is the region which corresponds to the segmented
light source.

Its discretized version is defined as

L̄ =

∑
(i)∈A L(i) dω(i)∑

(i)∈A dω(i)
. (8)

2.2. Photopic values

The previous photometric quantities are defined indepen-
dently of any color space. In our work, we apply the planar
illuminance (eq. (4)) for the dataset calibration in sec. 3 and
mean spherical illuminance (eq. (6)) in sec. 4.1 directly to
each of the RGB channel.

However, we also work with photopic luminance and il-
luminance, where the equations are applied to the photopic
luminance, defined as:

L = 0.212671LR + 0.715160LG + 0.072169LB . (9)

This is the case for the average source luminance (eq. (8)),
luminance vizualisation (sec. 4) and planar illuminance pre-
diction (sec. 5 and sec. 6).

2.3. Color spaces conversions

CIE Yxy to CIE XYZ The equations allowing the trans-
formation from Yxy to XYZ color spaces [5] are

X =
xY

y
, Y = Y, and Z =

(1− x− y)Y

y
.

(10)

CIE XYZ to CIE Yxy The inverse transformation corre-
sponds to [5]

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, and Y = Y .

(11)
2In practice, not all pixels are valid in the panoramas and a region at

the nadir, corresponding to where the tripod was at the time of capture, is
all-black.

RGB to CIE XYZ The relation between linear sRGB un-
der reference white D65 and XYZ is given by the following
matrix multiplication [3]XY

Z

 =

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

RG
B

.
(12)

CIE XYZ to RGB The inverse transformation of eq. (12)
is approximated asRG
B

 =

 3.2404542 −1.5371385 −0.4985314
−0.9692660 1.8760108 0.0415560
0.0556434 −0.2040259 1.0572252

XY
Z

.
(13)

Chroma meter RGB conversion To convert the xyY
color value captured by the chroma meter to RGB as is done
in sec. 3.4 of the paper, the equations eq. (10) and eq. (12)
are applied subsequently.

2.4. Color temperature from photometric HDR

We use McCamy’s approximation to compute the corre-
lated color temperature (CCT) from the chromaticity in CIE
xy format [4] in secs. 4.1, 5 and 6 of the main paper, defined
as

T = 449n3 + 3525n2 + 6823.3n+ 5518.87 , (14)

where
n =

x− 0.3320

0.1858− y
. (15)

The CCT is applied per-pixel to the photometric HDR by
first using eq. (12) to convert from RGB to CIE XYZ, then
using eq. (11) to convert to CIE xy and finally using eq. (14)
to obtain the CCT.

Average CCT The average CCT of a source used in sec.
4.2 is computed on the per-pixel CCT image as

T̄ =

∫
A
T dω∫

A
dω

, (16)

and its discretized version

T̄ =

∑
(i)∈A T (i) dω(i)∑

(i)∈A dω(i)
. (17)

3. Calibration
3.1. Coefficients regressions

The calibration coefficients identified in sec. 3.4 of the
paper are computed for each capture configuration. The re-
gressions for each channel of the two main configurations
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(b) f/4
Figure 2. The resulting regression for the measured illuminance
with the chroma meter over the integrated illuminance from the
HDR images for the aperture of (a) f/14, and (b) f/4. (a) The re-
sulting correction factors (slopes) are (11 872.8, 9472.0, 7814.3)
for (R, G, B), with R2 regression coefficients of determination of
(0.985, 0.987, 0.989) respectively. (b) The resulting correction
factors (slopes) are (727.5, 581.3, 472.8) for (R, G, B), with R2

regression coefficients of determination of (0.982, 0.984, 0.982)
respectively.

(f/14 and f/4) are shown in fig. 2. Since the other 3 con-
figurations represent but a small minority (2%) of the total
number of images (tab. 1), they were not captured for all of
the 135 calibration dataset scenes. Instead, they were only
captured on a subset (43) of the scenes, and directly com-
pared with the f/14 configuration instead of the chroma me-
ter to compute the relationship with the RGB coefficients at
aperture f/14. Since the change in aperture affects all three
channels simultaneously, a single coefficient is computed
from the three channels. The coefficients regression pre-
sented in fig. 3 bring the f/11, f/13 and f/18 configurations
respectively to their f/14 equivalent.

To calibrate the corresponding panoramas, the HDR is
first multiplied by the factor correcting to obtain the f/14
equivalent, and the coefficients for each channel of the f/14
configuration are then applied afterwards.

3.2. Uncertainty on calibration

The uncertainty on the calibrated dataset of sec. 3 of the
main paper depends on the configuration of the capture for
a given panorama. Tab. 1 lists the different configurations
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(b) f/14 over f/13
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(c) f/14 over f/18
Figure 3. The resulting regression for the integrated illuminance
from the HDR images for the aperture of (a) f/14 over the inte-
grated illuminance from the HDR images for the aperture of f/11,
(b) f/14 over f/13, and (c) f/14 over f/18. (a) The resulting cor-
rection factors (slope) is 0.585, with R2 regression coefficients of
determination of 0.999. (b) The resulting correction factors (slope)
is 0.796, with R2 regression coefficients of determination of 0.999.
(c) The resulting correction factors (slope) is 2.69, with R2 regres-
sion coefficients of determination of 0.998.

along with the standard deviation of the linear regression.
In all, we achieve very low (less than 1.5%) uncertainty
in the recovered luminance values across all configurations
and three color channels.

4. Visualisation
To complement fig. 3 of the paper, more examples of

scenes contained in the dataset are presented in fig. 4, sorted
by their mean spherical illuminance (MSI), with their value
close to the quantile indicated. Below are shown the log-



#panos Aperture Shutter speed R STD G STD B STD
[s±evstop] [%] [%] [%]

540 f/4 1/30 ± 2 2/3 1.43 1.35 1.43
7 f/11 1/30 ± 2 2/3 1.24 1.18 1.10
3 f/13 1/30 ± 2 2/3 1.23 1.17 1.08

1759 f/14 1/30 ± 2 2/3 1.18 1.12 1.03
53 f/18 1/60 ± 2 2/3 1.27 1.22 1.13

Table 1. Uncertainty on the calibration process for each of the 5
capture configurations (aperture and shutter speed) in the dataset.
The ISO for each configuration is 100.

luminance maps associated to the scene.
To add to fig. 4 of the paper, fig. 5 shows more examples

of scenes, this time sorted by their CCT value. The map
below corresponds their associated CCT.

Fig. 6 shows the correlation between the CCT and the
average luminance for the individual light sources detected
discussed in sec. 4.2 of the paper (10 289 out of 11 060
sources are included in the figure). The distribution of the
values are also shown on the edge of the figure. It is pos-
sible to see that cooler sources are more frequent than the
warmer (which tend to correspond to windows). However,
the distribution in average luminance is quite symmetrical.

The average value of the average luminance for
all the light sources included in fig. 6 (values in
[50 cdm−2, 600 000 cdm−2]) is 18 029 cdm−2, with a me-
dian of 3991 cdm−2. The average value of the average lu-
minance for all the light sources included in the dataset is
27 874 cdm−2, with a median of 3854 cdm−2. The aver-
age value of the CCT for all the light sources included in
fig. 6 (values in in [2000K, 9000K]) is 3633K, with a me-
dian of 3404K. The average value of the CCT for all the
light sources included in the dataset is 3648K, with a me-
dian of 3380K.

5. Learning tasks

5.1. Input data

We apply different transformations to the input given to
the networks in sec. 5 and sec. 6 of the paper. For per-pixel
luminance prediction, random noise is added to the input
and gamma and quantization are applied to the image. For
per-pixel color prediction, a random WB augmenter [1] is
applied the input. Those transformations are visualized in
fig. 7.

5.2. Experiments

The following results complement the experiments of
sec. 5.3 of the paper.

Per-pixel luminance Fig. 8 shows qualitative predictions,
comparing the ground truth luminance to the predicted lu-

minance. Observe that most of the errors are due to incor-
rect scale prediction.

Per-pixel color Fig. 9 shows the effect of different white
balance augmentations. The network is trained and tested
on all augmentation settings independently.

Planar illuminance Fig. 10 shows illuminance predic-
tions, along with their given inputs and the full hemispheres
used for ground truth illuminance. Light sources being
slightly outside the FOV and the unknown camera exposure
make illuminance prediction from a single image a very dif-
ficult task. We hope our dataset will provide a useful re-
source to the community to tackle these challenging new
problems.

Additionally, the effect of modifying the photometric in-
formation of the input is visualized in fig. 11
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Figure 4. Example scenes with mean spherical illuminance (MSI) close to the quantile values to complement fig. 3 from the main paper.
Greyscale images below show the corresponding log-luminance maps. The percentiles and corresponding measured MSI are indicated

above the images. Images are reexposed and tonemapped (γ = 2.2) for display. Luminance color map: 10
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Figure 5. Example scenes with CCT close to the quantile values to complement fig. 4 from the main paper. Colored images below show the
CCT map of the scenes. The percentiles and corresponding measured scene CCT are indicated above the images. Images are reexposed
and tonemapped (γ = 2.2) for display. CCT map: 2 3 4 5 6 7 8 9
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Figure 6. Correlation between the CCT and the average lumi-
nance for each light source in our calibrated dataset. The dis-
tributions of the CCT (top) and average luminance (right) of
the light sources are also displayed. Only the light sources
with a CCT in [2000K, 9000K] and an average luminance in
[50 cdm−2, 600 000 cdm−2] are included to better see the trends
(10 289 out of 11 060 sources).

Linear Gamma Noise Quantization WB

Figure 7. Examples of panorama inputs given to the networks. For
visualization, each image is split to show 6 transformations from
left to right: Linear, Gamma, Noise, Quantization, Hue. Each in-
put is reexposed and clipped in the range [0, 1]. “Linear” applies
no further modification. “Gamma” applies a gamma of γ = 2.2.
“Noise” applies additive Gaussian noise of variance uniformly
drawn in the range [0, 0.03]. “Quantization” constraints the in-
put in 255 values. “WB” applies a random WB augmenter [1].
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Figure 8. Examples of per-pixel luminance prediction. The first row indicates the RMSE percentile: the RMSE (relative error). The “input”
is the calibrated HDR reexposed and clipped. Other rows show the ground truth and predicted photopic luminance maps. The colormap
for the luminance is shown at the right.
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Figure 9. Test scores of color prediction with inputs at different
white balance corrections with two different photofinishing pro-
files. The network is trained on all input corrections.
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Figure 10. Examples planar illuminance prediction with FOV of 120◦. The first row indicates the RMSE percentile: the RMSE. Below are
the calibrated HDR hemispheres reexposed and clipped, with the field of view of the image below outlined in red. Below is the projected
HDR hemisphere reexposed and clipped given to the network. The last row shows the ground truth and predicted scalars planar illuminance
respectively.
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(c) LDR
Figure 11. The distribution of RMSE scores with different levels of
photometric information in the input. The 180◦ hemisphere image
is given as (a) HDR, (b) LDR with photometric scale, and (c) LDR
without photometric scale.


