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We present additional results and implementation details
in the supplementary. To avoid confusion, we use the same
set of index numbers as in the main text to refer to the tables
and figures. Please find Tables 1-3 and Figures 1-6 in the
main text.

A. Additional Ablations and Analyses
A.1. Results on VTAB

We report the results of our VTAB [7] experiment in Ta-
ble 4. On VTAB, We find that both DISTILLWEIGHTED and
DISTILLNEAREST distillation outperform IN+TRANSFER
on each of the Natural tasks. Particularly, DISTILL-
WEIGHTED outperforms IN+TRANSFER with 13.9%-points
on CIFAR-10 and 10.6%-points on Sun397 and aver-
aged across Natural DISTILLWEIGHTED outperforms
IN+TRANSFER with 5.1%-points. Average over Spe-
cialized both DISTILLWEIGHTED and DISTILLNEAREST
outperform IN+TRANSFER, although with a small margin.
Finally, averaged over Structured IN+TRANSFER outper-
forms our methods, but due to the nature of these tasks, we
do not expect source models to transfer well to these tasks.1

Yet, we still obtain the best accuracy on DMLab, dSpr-Loc,
and sNORB-Azimuth.

A.2. Relative accuracy of single-source distillation

Similarly to Table 3, we extend our evaluation of how
well the task similarity selects the best source models for
single-source distillation. We report the ratio between the
average test accuracy of the top-k target models ranked using
the task similarity and the average test accuracy for the actual
top-k target models found after the fact in Table 5, Table 6,
and Table 7 for k = 1, k = 3, and k = 5, respectively.

We find that generally, using task similarity on feature

1The Structured tasks are mainly (ordinal) regression tasks transformed
into classification tasks, and thus it seems reasonable to expect very general
features (such as those from an ImageNet pre-trained model) to generalize
better to such constructed tasks than specialized source models.

representations rather than the corresponding pseudo-labels
yields better rankings, but also that PARC shows very little
difference between features and pseudo-labels for all consid-
ered k ∈ {1, 3, 5}.

Relative accuracy over all k. The relative accuracy mea-
sure reported above is sensitive to k and the actual accuracy
values of the models. I.e. if a metric flips the order of the best
and second best model when there is a notable performance
gap between the two models, the relative accuracy for k = 1
will be low, and we might be mistaken to believe the metric
is not working well. However, the metric might rank every
model for k > 2 perfectly correct, and since we typically uti-
lize the full set of source models, the initial mistake should
not be detrimental to the selection of the task similarity met-
ric. Thus, in Figure 7 we plot the relative accuracy for each
task similarity metric and all k ∈ {1, . . . , S}. We find that
while PARC on feature representations is outperformed by
both PARC and CKA on pseudo-labels for k < 3, PARC on
feature representations outperforms all the other metrics for
k ≥ 3. In particular, from Table 8 we have that on average
over all k < S, PARC, performs the best.

A.3. Ablation of p for DISTILLWEIGHTED

We report the values associated with Figure 6 for each
target task and all considered choices of p in Table 9.

A.4. DISTILLWEIGHTED with ResNet-50 as target ar-
chitecture

In the main part of the article, we consider the compu-
tationally constrained setting, where some compute budget
restricts the possible size of our target model. Thus, we use
MobileNetV3 models as target models throughout the main
paper. However, in Table 10 we remove the computational
budget and allow the target model to be of any architecture,
and particularly we use a ResNet-50 as the target model.

We compare DISTILLWEIGHTED (with p = 0 and
p = 12) initialized with either ImageNet pre-trained weights

https://github.com/Kennethborup/DistillWeighted
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IN+Transfer 88.1 47.0 57.4 85.8 82.8 75.3 27.8 66.3 81.0 95.0 80.0 72.7 82.2 73.1 55.9 43.6 75.7 18.7 58.6 21.2 46.0 49.1 62.4
DISTILLWEIGHTED 88.6 60.9 62.4 86.1 84.4 79.0 38.4 71.4 80.6 95.9 83.3 72.2 83.0 57.4 45.6 44.6 67.7 27.4 44.9 23.9 38.2 43.7 62.2
DISTILLNEAREST 88.9 59.5 61.9 86.2 84.5 79.5 37.6 71.1 80.5 95.8 83.2 71.7 82.8 60.5 45.4 45.2 67.9 20.8 40.6 24.2 36.5 42.6 61.6

Table 4: Top-1 accuracy by dataset in VTAB. The accuracy for each task is in grey, and the average accuracy for each category
of tasks is in black. Note, the Mean is the average across all tasks, not categories. The largest value in each column is marked
in bold. Here DISTILLWEIGHTED is with p = 9.
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do CKA 99.6 100.0 96.1 99.5 98.1 100.0 100.0 100.0 99.2
PARC 99.3 100.0 93.6 99.5 98.3 100.0 98.4 100.0 98.6
RSA 99.3 74.8 94.8 99.5 98.3 86.6 97.8 95.6 93.4

Fe
at

ur
e CKA 99.6 81.0 92.6 99.8 98.3 100.0 100.0 100.0 96.4

PARC 99.6 100.0 94.6 99.5 97.7 100.0 95.1 100.0 98.3
RSA 99.6 100.0 92.6 99.5 98.3 80.6 100.0 100.0 96.3

Table 5: Relative accuracy of top-1 single-source distilled
target model selected by task similarity over the best model
found in hindsight. We compute the test accuracy of the
highest-ranked target model (ranked by some task similarity)
and divide this by the test accuracy of the best-performing
target model.
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do CKA 99.1 95.6 97.4 99.6 98.8 89.4 100.0 97.6 97.2
PARC 99.5 100.0 95.5 99.6 98.5 99.7 98.8 99.7 98.9
RSA 100.0 77.7 96.5 99.7 98.5 87.2 98.6 97.6 94.5

Fe
at

ur
e CKA 100.0 95.6 97.0 99.8 99.0 93.3 100.0 96.4 97.6

PARC 100.0 100.0 97.8 99.7 98.3 100.0 97.1 98.5 98.9
RSA 100.0 100.0 96.7 99.8 98.9 94.9 98.9 98.8 98.5

Table 6: (Identical to Table 3) Relative accuracy of top-3
single-source distilled target models selected by task similar-
ity over the average of the 3 best models found in hindsight.
We compute the average test accuracy of the top-3 highest
ranked target models and divide this average by the average
test accuracy of the 3 best-performing target models.

or the weights of the highest ranked ResNet-50 source model
to IN+TRANSFER and FINE-TUNE SELECTED SOURCE.
We find that DISTILLWEIGHTED initialized from ImageNet
outperforms IN+TRANSFER on average for both equal
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do CKA 99.3 98.7 98.3 99.7 99.0 92.9 99.2 98.4 98.2
PARC 99.7 100.0 96.7 99.7 98.9 94.5 99.4 98.4 98.4
RSA 99.7 83.2 97.6 99.8 99.0 84.9 99.2 92.8 94.5

Fe
at

ur
e CKA 99.7 97.4 97.7 99.8 98.9 96.5 99.2 97.8 98.4

PARC 99.7 100.0 97.9 99.8 99.1 99.7 97.5 99.7 99.2
RSA 99.7 99.7 97.9 99.8 99.2 97.9 98.9 99.7 99.1

Table 7: Relative accuracy of top-5 single-source distilled
target models selected by task similarity over the average
of the 5 best models found in hindsight. We compute the
results analogously to Table 6 with k = 5.

CKA PARC RSA

Pseudo 0.985 0.990 0.974
Feature 0.986 0.993 0.991

Table 8: The mean relative accuracy, across all k, for each
metric in Figure 7. The average is bounded in (0, 1], and 1
corresponds to perfect ordering by task similarity. We find
that using feature representations consistently outperforms
pseudo-labels and that for both feature representations and
pseudo-labels PARC performs the best.

weighting and p = 12, but underperforms FINE-TUNE SE-
LECTED SOURCE for both p. However, since FINE-TUNE
SELECTED SOURCE is initialized from well-selected source
model weights, the comparison is not entirely fair. Thus, we
also consider the case where we initialize the target model for
DISTILLWEIGHTED with the weights of the highest ranked
ResNet-50 source model, and find that for p = 12 DISTILL-
WEIGHTED performs on par with FINE-TUNE SELECTED
SOURCE.
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Figure 7: Relative accuracy of top-k single-source distilled
target models selected by task similarity over the average
of the top-k actual best target models found in hindsight. If
the ordering by task similarity were perfectly correct, the
relative accuracy would be 1 for all k. See Table 8 for the
average of each metric across all k.
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IN+Transfer 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2
IN+FixMatch 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3

DISTILLEQUAL 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3
DISTILLWEIGHTED(1) 91.1 55.6 46.5 97.9 81.5 42.5 83.3 64.4 70.3
DISTILLWEIGHTED(3) 91.6 57.7 46.5 97.7 82.3 44.5 84.6 67.4 71.6
DISTILLWEIGHTED(6) 91.8 59.0 46.7 97.5 82.5 46.7 84.7 69.1 72.3
DISTILLWEIGHTED(9) 92.0 59.6 46.8 97.6 82.4 47.6 84.5 69.5 72.5
DISTILLWEIGHTED(12) 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8
DISTILLWEIGHTED(15) 92.6 60.3 46.7 97.5 81.7 48.2 83.9 70.2 72.6
DISTILLNEAREST 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2

Table 9: Test accuracy of DISTILLWEIGHTED with var-
ious choices of p, compared to the baseline methods of
IN+TRANSFER and IN+FIXMATCH. We highlight the
largest value for each target task in bold, and the results
are also visualized in Figure 6.

A.5. Normalization of task similarity for source
model weighting

We propose to choose the weights α = (α1, . . . , αS) as

αi =
epi∑S
s=1 e

p
s

, where ej = 1(ej>0) ej

for j = 1, . . . , S, and es is the task similarity for source
model Ms, evaluated on the target task, normalized to sat-
isfy es ∈ [0, 1] with min-max normalization over all es.
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IN+Transfer ImageNet 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
Fine-tune Source Source 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

DISTILLEQUAL ImageNet 87.8 57.3 46.1 97.0 78.9 42.4 84.1 64.5 69.8
DISTILLWEIGHTED(12) ImageNet 91.5 64.5 45.4 97.0 78.9 49.8 87.1 74.2 73.6

DISTILLEQUAL Source 87.5 68.8 45.5 97.4 81.2 43.2 81.9 65.1 71.3
DISTILLWEIGHTED(12) Source 91.6 70.0 47.6 97.0 80.8 50.0 85.7 73.8 74.6

Table 10: DISTILLWEIGHTED with ResNet-50 as target
model architecture. We compare fine-tuning of the highest
ranked source model [2] with DISTILLWEIGHTED to both
ImageNet-initialized target models and target models ini-
tialized from the highest ranked ResNet-50 source model.
For p = 12, DISTILLWEIGHTED performs on par with fine-
tuning the selected source model. The largest value for each
target task is in bold.

Here, the hyperparameter, p can be used to increase/decrease
the relative weight on the highest ranked source models,
with the extremes p = 0 and p → ∞ corresponding to equal
weight and single-source distillation, respectively. An alter-
native way to obtain our normalization is to use the softmax
function on the task similarities,

αi =
exp

(
ei
T

)∑S
s=1 exp

(
es
T

) .
This does not require clipping the task similarity at 0, and
with the temperature, T , we can adjust the relative weight on
particular source models. Here, large T flattens the weights,
and T → ∞ corresponds to an equal weighting of all source
models, while small T increases the weight on the highest-
ranked source models. Quantitatively, the two normalization
methods can yield similar transformations with appropriate
choices of p and T - see Figure 8.

A.6. Smaller amount of labeled data

We now repeat the experiment of the main paper across
the 8 target datasets with a reduced amount of labeled sam-
ples. Here, we reduce the number of labeled samples to
5% (rather than 20%) of the training set and report the ac-
curacy in Table 11. We find a similar pattern as observed in
the main experiment, where DISTILLWEIGHTED distillation
on average outperforms IN+TRANSFER irrespective of the
choice of p. For p = 9 DISTILLWEIGHTED outperforms
IN+TRANSFER by 6.8%-point on average and in particular
15.5%-points on CUB200, whereas the only loss in perfor-
mance is on ChestX with a drop of 0.9%-point.
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Figure 8: Transformation of weights for various choices of power (left) or softmax temperature (right). Here S is the number
of source models, and we consider equidistantly distributed normalized metrics.
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IN+Transfer 88.0 16.8 43.5 94.8 73.9 14.4 55.0 38.9 53.2

DISTILLWEIGHTED(1) 88.1 29.2 42.3 95.9 76.3 20.5 66.6 42.1 57.6
DISTILLWEIGHTED(9) 90.2 32.3 42.6 95.9 76.7 24.8 68.2 49.0 60.0
DISTILLNEAREST 87.2 31.4 39.7 95.1 75.4 24.0 58.9 49.7 57.7

Table 11: Distillation on the eight target tasks with only 5%
labeled samples per task. Again, we compare to the baseline
of IN+TRANSFER. The largest value for each target task is
in bold.

A.7. Different Measures of Correlation

In order to evaluate the quality of a task similarity metric
to estimate the performance of a target model after distil-
lation, we consider the correlation between the computed
metric and the actual observed performance after distillation.
However, since we have no reason to believe that the rela-
tionship is linear, we consider the Spearman correlation in
the main paper. However, for completeness of exposition,
we report Pearson correlation and Kendall’s Tau in Table 12
and Table 13, respectively. For both these correlation mea-
sures, the overall conclusions are the same: Using feature
representations is preferable to pseudo-labels, and PARC
generally outperforms both CKA and RSA, albeit not by
much over CKA.

A.8. Choice of Task Similarity Metrics

Recently, multiple measures intended to estimate the
transferability of a source model have been proposed. How-
ever, despite the very recently published Multi-Source Leep
(MS-LEEP) and Ensemble Leep (E-Leep) no task similarity
metric considers the estimation over multiple models at once
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do CKA 0.62 0.85 0.07 0.30 -0.06 0.33 0.67 0.21 0.37
PARC 0.75 0.74 -0.03 0.27 -0.00 0.36 0.63 0.51 0.40
RSA 0.75 0.13 -0.07 0.38 0.04 -0.09 0.66 0.40 0.27

Fe
at

ur
e CKA 0.84 0.60 0.39 0.29 0.00 0.30 0.71 0.54 0.46

PARC 0.86 0.73 0.17 0.46 -0.06 0.58 0.77 0.78 0.54
RSA 0.90 0.85 0.07 0.45 0.04 0.27 0.87 0.83 0.54

Table 12: Pearson correlation between test accuracy after
all possible single-source distillations and task similarity
associated with the source models. Similar to Table 2.
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do CKA 0.51 0.46 0.16 0.28 -0.05 0.24 0.49 0.07 0.27
PARC 0.61 0.64 0.01 0.12 0.02 0.36 0.54 0.39 0.34
RSA 0.62 0.17 -0.07 0.22 0.08 -0.01 0.48 0.29 0.22

Fe
at

ur
e CKA 0.67 0.34 0.25 0.14 -0.05 0.40 0.50 0.38 0.33

PARC 0.69 0.67 0.14 0.31 -0.10 0.65 0.62 0.67 0.46
RSA 0.72 0.65 0.02 0.28 0.02 0.19 0.72 0.67 0.41

Table 13: Kendall Tau correlation between test accuracy after
all possible single-source distillations and task similarity
associated with the source models. Similar to Table 2.

[1]. Thus, we consider each source model separately and
compute the metrics independent of other source models.
This has the added benefit of reducing the number of metric
computations required as we do not need to compute the task
similarity for all possible combinations of n models from S



possible (i.e.
(
n
S

)
), which grows fast with S.

Assume X ∈ RN×dX and Y ∈ RN×dY , and that Kij =
k(xi,xj) for and Lij = l(yi,yj) where k, and l are two
(similarity) kernels as well as xi,xj and yi,yj are rows of
X and Y, respectively. Then we have that CKA is defined
as

ρCKA(X,Y)
def
=

HSIC(K,L)√
HSIC(K,K)HSIC(L,L)

,

where K,L ∈ RN×N and HSIC is the Hilbert-Schmidt
Independence Criterion,

HSIC(K,L)
def
=

1

(N − 1)2
tr (KHNLHN ) , with

HN
def
= IN − 1

N
11⊺.

In particular, if both k and l are linear kernels, then

ρCKA(X,Y) =
∥Y⊺X∥2F

∥X⊺X∥F ∥Y⊺Y∥F
,

where ∥·∥F is the Frobenius norm. We use the linear ker-
nel throughout this paper and refer to Cortes et al. [3] for
additional details on CKA.

For RSA, we consider the dissimilarity matrices given by

Kij
def
= 1− pearson(xi,xj) and

Lij
def
= 1− pearson(yi,yj),

where X and Y are assumed normalized to have mean 0
and variance 1. We then compute RSA as the Spearman
correlation between the lower triangles of K and L,

ρRSA(X,Y)
def
= spearman ({Kij | i < j}, {Lij | i < j}) .

For additional details on RSA, we refer the reader to Dwivedi
and Roig [4]. While Bolya et al. [2] introduces PARC along-
side a heuristic and feature reduction, the PARC metric is
almost identical to RSA. However, RSA was introduced to
compute similarities between two sets of representations,
and PARC was aimed at computing similarities between a
set of representations and a set of labels associated with the
dataset. Thus, in our use of PARC, it merely differs from
RSA in the lack of normalization of Y, which is assumed to
be one-hot encoded vectors of class labels from the probe
dataset.

A.9. Compute Requirements and Scalability

For DISTILLNEAREST and DISTILLWEIGHTED to be
feasible in practice, we need to ensure that the computa-
tional costs of training and inference for both methods are
reasonable and that it scales well with the size of S.

Inference We note, that while both DISTILLNEAREST
and DISTILLWEIGHTED use additional classifier head(s)
during training, these are discarded at inference time, and
no additional compute overhead remains. Thus, memory
and compute requirements at inference time are identical to
those of the original target model, and thereby the equivalent
target model trained supervised.

Training We can separate the training procedure into two
phases; a) estimation of task similarity metrics, and b) train-
ing of the target model with DISTILLNEAREST or DISTILL-
WEIGHTED. The majority of compute is typically needed
for b) as is expected for the training of neural networks. For
a) we estimate the task similarity metric for a single model
based on the small annotated probe set (we use 500 sam-
ples). The computation of the metric itself is dominated by
the forward pass, which is a single forward pass on each of
the 500 samples, thus corresponding to less compute than 4
batches of training, where we typically train for thousands
of batches. We thus consider phase a) as negligible as it
is also reusable across multiple experiments for the target
task. Furthermore, for b) we use additional compute in two
parts of the training; 1) training of an additional classifier
head per source model used (thus 1 for DISTILLNEAREST
and |S| for DISTILLWEIGHTED), and 2) obtaining pseudo-
labels for the unlabeled data. We note that for 224 × 224
inputs, a MobileNetV3 uses 0.24 GFLOPs as default, and
each additional classifier head requires an additional approx.
0.0013 GFLOPs (for 1000 classes). Thus, we can attach
about 3000 classifier heads (and thereby 3000 source mod-
els) to a MobileNetV3 before we require the same GFLOPs
as a ResNet-50. Regarding 2), the pseudo-labels are obtained
by a single forward pass by each source model over the unla-
beled data. For very large source models, this can potentially
be expensive, but the pseudo-labels can be reused across
multiple experiments for the same target task. However, the
computational requirements for this step highly depend on
the set of source models S, and is thereby hard to quantify.

B. Experimental Details

In the following, we provide some experimental details.

B.1. Main Experiments

Unless otherwise mentioned, we use SGD with a learn-
ing rate of 0.01, weight decay of 0.0001, batch size
of 128, and loss weighting of λ = 0.8. We ini-
tialize our target models with the ImageNet pre-trained
weights available in torchvision (https://pytorch.
org/vision/stable/models) and consider 28 fine-
tuned models from Bolya et al. [2] publicly available at
github.com/dbolya/parc as our set of source mod-
els. The source models consist of each of the architectures

https://pytorch.org/vision/stable/models
https://pytorch.org/vision/stable/models
github.com/dbolya/parc


(AlexNet, GoogLeNet, ResNet-18, and ResNet-50) trained
on CIFAR-10, Caltech101, CUB200, NABird, Oxford Pets,
Stanford Dogs, and VOC2007. Note, we always exclude
any source model trained on the particular target task, thus
effectively reducing the number of source models for some
target tasks. For FixMatch we use a batch size of 128 (with a
1:1 ratio of labeled to unlabeled samples for each batch) and
fix the confidence threshold at 0.95 and the temperature at 1.
We keep the loss weighting between the supervised loss and
the unlabeled FixMatch loss at λ = 0.8.

B.2. VTAB Experiments

For each VTAB experiment, we consider the full training
set (as introduced in Zhai et al. [7]) as the unlabeled set, Du

τ ,
and the VTAB-1K subset as the labeled set, Dl

τ . We use
the Pytorch implementation from Jia et al. [5] available at
github.com/KMnP/vpt.

We use SGD with a learning rate of 0.005, weight decay
of 0.0001, batch size of 128 equally split in 64 labeled and
unlabeled samples, and loss weighting of λ = 0.9. We train
our models for 100 epochs, where we define one epoch as
the number of steps required to traverse the set of unlabeled
target data, Du

τ when using semi-supervised methods, or
merely as the number of steps to traverse the labeled set,
Dl

τ , for supervised transfer methods. We initialize our target
models with the BiT-M ResNet-50x1 model fine-tuned on
ILSVRC-2012 from BiT [6] publicly available at github.
com/google-research/big_transfer.

We consider the 19 BiT-M ResNet-50x1 models fine-
tuned on the VTAB-1K target tasks from Kolesnikov et al.
[6] as the set of source models. We always exclude the source
model associated with the target task from the set of source
models, and thus effectively have 18 source models available
for each target task in VTAB. We use the PARC metric on
the source model features to compute the source weighting,
but also only use the top-5 highest-ranked source models to
reduce the computational costs of training. Furthermore, we
use p = 9 for DISTILLWEIGHTED.

C. Domain gap between source tasks, targets
tasks and ImageNet

As is evident from Figure 3 and Table 1, both DISTILL-
NEAREST and DISTILLWEIGHTED do not yield notable
improvements on e.g. ChestX and ISIC, but yield significant
improvements on e.g. CUB200 and Oxford Pets. Notably,
for the latter target tasks there are semantically similar source
tasks present in our set of source models, while this is not
true for the former target tasks. Hence, as one would ex-
pect, the availability of a source model trained on source
tasks similar to the target tasks is important for cross-domain
distillation to work well, which is expected to be true for
both DISTILLNEAREST and DISTILLWEIGHTED. Indeed,

the task similarity metrics considered in this paper all aim
at measuring alignment between tasks, and if the alignment
between source and target tasks is small, we do not expect
to gain much from distillation. This is affirmed by our exper-
iments in e.g. Table 1.

C.1. A note on potential data overlap between
source and target tasks

Whenever any type of transfer learning is applied, in-
cluding using ImageNet initializations, we (often implicitly)
assume that the model we transfer from has not been trained
on any data from the target test set. Although this assump-
tion is often satisfied in practice due to domain gaps between
the source and target task, utilizing initializations trained on
e.g. ImageNet can potentially violate the assumption. This
is due to the fact that ImageNet and many other modern
publicly available datasets are gathered from various public
websites and overlaps between samples in different datasets
might occur.

Thus, it is natural to question whether the observed im-
provements are due to methodological advances or infor-
mation leakage between source and target tasks. To en-
sure our advancements are valid we carefully remove any
source model associated with the target task from the set
of source models, S. However, information leakage might
still appear if e.g. there are identical samples in the target
dataset and the source dataset or ImageNet. Despite large
overlaps being improbable, it has been shown that there
e.g. is a minor overlap (of at least 43 samples) between the
training set of ImageNet and the test set of CUB200 (see
e.g. https://gist.github.com/arunmallya/
a6889f151483dcb348fa70523cb4f578). However,
since the test set of CUB200 consists of 5794 samples, the
presence of such a minor overlap should not affect the true
performance of a model much.

In our experiments, we consistently compare our target
models (initialized with ImageNet weights) to either identi-
cally initialized target models or source models initialized
with either ImageNet weights or with weights from a source
task. Hence, any potential gain from information leakage be-
tween ImageNet and a target task would bias both our results
and the baselines, and thereby not affect our overall results.
Furthermore, while an overlap between a source and target
task might unfairly benefit the performance of our methods
compared to IN+TRANSFER and IN+FIXMATCH, such an
overlap would likely benefit the fine-tuned source models
even more making this baseline even harder to outperform
(see e.g. Figure 5 and Table 1). Thus, our results should be
at most as biased as the baselines.
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