
HyperReenact: One-Shot Reenactment via Jointly Learning to Refine and
Retarget Faces

– Supplementary Material –

Stella Bounareli1, Christos Tzelepis2, Vasileios Argyriou1, Ioannis Patras2,
Georgios Tzimiropoulos2

1 School of Computer Science and Mathematics, Kingston University London
2 School of Electronic Engineering and Computer Science, Queen Mary University of London

In this supplementary material, we first provide a de-
tailed analysis of the network architecture of the proposed
framework (HyperReenact) in Section 1. In Section 2,
we show results of two state-of-the-art inversion methods,
namely, HyperStyle [1] and HyperInverter [6], on real im-
age editing and compare our method against HyperStyle [1].
In Section 3, we discuss the limitations of our method and
in Section 4 we present comparisons against two meth-
ods, namely, StyleHEAT [22] and StyleMask [3], while in
Section 6 we provide additional results of our method on
the VoxCeleb1 [13] and the VoxCeleb2 [5] datasets. Fi-
nally, along with this report, please find attached an ex-
ternal video file that includes 10 randomly selected iden-
tities for self reenactment and 10 randomly selected pairs
for cross-subject reenactment (for both VoxCeleb1 [13] and
VoxCeleb2 [5] datasets).

1. Network architecture
In this section we provide details of the various com-

ponents of the proposed framework (HyperReenact). An
overview of HyperReenact is shown in Fig. 2 in the main
paper. More specifically, we propose to blend the appear-
ance feature map fapp of size 512 × 7 × 7 and the pose
feature map fp of size 2048× 7× 7 using the Reenactment
Module (RM), which is illustrated in Fig. 1. As shown, we
first project the fp using a convolutional layer (kernel=(1,1),
stride=1, pad=0) into the same channel size of fapp. Then
for each feature map we learn the two modulation param-
eters γ and β using convolutions with a kernel size of 1,
stride set to 1 and padding set to 0. The output feature map
fr of size 512× 7× 7, computed using Eq. 1 from the main
paper, is then fed into the different reenactment blocks of
the hypernetwork.

Our hypernetwork H consists of M < N Reenactment
Blocks (RB), where M is the number of generator layers
that we control and N is the total number of layers in the
generator. Each of those blocks takes as input the feature

Reenactment Module (RM)
Hypernetwork

S
h

a
re

d
R

e
e

n
a

ct
m

e
n

t 
B

lo
ck

s

L
a

ye
r-

sp
e

ci
fi

c 
R

e
e

n
a

ct
m

e
n

t 
B

lo
ck

s

Figure 1: Illustration of the two learnable components of
our architecture, namely, the Reenactment Module (RM)
and the hypernetwork H. The RM module fuses appear-
ance features from the source face and pose features from
the target face and outputs the fused feature map fr, that
drives the hypernetwork H. The hypernetwork H consists
of multiple Reenactment Blocks with each one of them cor-
responding to a particular layer of the generator.

map fr and outputs the corresponding offset ∆θℓ for the
weights of each layer of the generator. In Table 1 we report
the structure of StyleGAN2 generator trained on 256× 256
image resolution. From the blocks shown in Table 1 we
only modify the convolutional layers (Conv), as the ToRGB
layers mainly affect the colors of the generated images [21].
Hence, we propose to modify M = 13 layers.

In order to reduce the number of trainable parame-
ters, similarly to HyperStyle [1], we propose to use two
types of Reenactment Blocks, namely, the Shared Reenact-
ment Blocks and the Layer-specific Reenactment Blocks,
as shown in Fig. 1. We present an overview of the archi-
tecture of both blocks in Fig. 2. In both types of blocks,
the input feature map fr is first fed into a series of convolu-
tional layers that process and down-sample the input into
the shape of 512 × 1 × 1. Regarding the Shared Reen-
actment Blocks, as shown on the top row of Fig. 2, the
down-sampled feature map is then flattened and fed into



a fully-connected layer. Afterwards, the two shared fully-
connected layers are used to calculate the output feature
map of shape Cout

ℓ × Cin
ℓ × 1 × 1, which is repeated

spatially so as to match the shape of the convolutional
kernels (Cout

ℓ × Cin
ℓ × kℓ × kℓ). Regarding the Layer-

specific Reenactment Blocks, as shown on the bottom row
of Fig. 2, after the series of down-sampling convolutional
layers, the computed feature map has a shape of 512×1×1.
This feature map, upon being flattened, is fed into a final
fully-connected layer which outputs a feature map of shape
Cout

ℓ ×Cin
ℓ ×1×1, which is then spatially repeated to have

a shape of Cout
ℓ × Cin

ℓ × kℓ × kℓ.
We provide in more detail the structure of the two Reen-

actment Blocks in Tables 2 and 3. Finally, in Table 4, we
report the StyleGAN2 layers that we propose to modify as
well as the type of the Reenactment Block that we use for
each layer. As shown in Table 4, we use the Shared Reenact-
ment Blocks for the first seven layers of the generator. As a
result, the parameters of two fully-connected layers across
all the Shared Reenactment Blocks, are common. For the
last six layers of the generator, we use the Layer-specific
Reenactment Blocks. We note that the use of the shared
layers reduces our trainable parameters from 1.2B to 300M.

2. Comparisons with HyperStyle

As discussed in the main paper, the proposed framework
draws inspiration from two state-of-the-art methods (for
the task of real image inversion), namely, HyperStyle [1]
and HyperInverter [6]. Specifically, similarly to [1, 6],
we also incorporate a hypernetwork [7] in order to learn
how to effectively modify the weights of a pretrained Style-
GAN2 [10] generator. However, we note that [1, 6] aim at
the problem of real image inversion, not neural face reen-
actment.

Both HyperStyle [1] and HyperInverter [6] produce
high-quality results on real image inversion, however their
quality degenerates significantly when manipulating the in-
verted images, especially on head pose editing. In Fig. 3,
we show results of HyperStyle [1] (Fig. 3a) and Hyper-
Inverter [6] (Fig. 3b) on head pose editing using the the
CelebA dataset [9]. It is worth noting that, while both meth-
ods excel on real image inversion (the inverted images are
inside the red boxes), they produce several visual artifacts
on the edited images, which renders them unsuitable for the
task of real image reenactment. We note that we obtain the
edited images using the InterFaceGAN method [17] to shift
the latent codes.

To further compare our method with HyperStyle [1], in-
stead of simply editing the head pose as shown above, we
perform face reenactment using the learned directions from
the work of FD [2]. We note that FD learns the directions in
the W+ latent space of a StyleGAN2 model trained on the

VoxCeleb1 [13] dataset that are responsible for controlling
the facial pose. In order to test HyperStyle along with FD,
we train HyperStyle on the VoxCeleb1 dataset. We refer to
this pipeline as HyperStyle-FD. In Fig. 4 we show compar-
isons of our method against HyperStyle-FD. We note that
the reenacted images using HyperStyle-FD not only present
visual artifacts, but also look unnatural, especially when the
source and target images have large head pose differences.

3. Limitations

As shown in the main paper and in the additional exper-
imental results provided in this supplementary material, the
proposed HyperReenact, in contrast to several state-of-the-
art works, achieves to effectively reenact a source face given
a target facial pose, preserving the source identity character-
istics and producing artifact-free images, especially in the
cases where the target and the source faces differ largely
in head pose. Nevertheless, we observe that in cases where
the source facial images depict accessories such hats or eye-
glasses, the proposed method fails to reconstruct them in
detail. For instance, as shown in Fig. 5, our method can-
not fully reconstruct the style of the glasses in the example
of the first row. Similarly, regarding the examples of the
second and third row of Fig. 5, our method is not able to
reconstruct every detail on the hats. We attribute this to the
fact that such items are underrepresented on the VoxCeleb1
dataset and, as a result, our method is not able to learn how
to reconstruct them. Additionally, we do not refine any de-
tails on the background of the generated images.

4. Comparisons with StyleHEAT [22] and
StyleMask [3]

As discussed in Section 4, StyleHEAT [22] is trained on
the HDTF dataset [24], that consists of facial images ex-
hibiting only small roll angle variations and showing mostly
frontal views. Moreover, StyleMask [3] is a face reen-
actment method based on a pretrained StyleGAN2 model
trained on the FFHQ dataset, which learns to disentangle
the identity characteristics from the facial pose using the
disentangled properties of the style space S of StyleGAN2.
Both StyleHEAT and StyleMask require the input images
to be aligned, similarly to the FFHQ dataset [9]. In Fig. 6
and in Table 5, we present qualitative and quantitative com-
parisons with StyleHEAT and StyleMask on the VoxCeleb1
dataset [13]. Clearly, StyleHEAT performs poorly by gen-
erating many visual artifacts when the source and target
images have large pose variations, while StyleMask is not
able to faithfully reconstruct the source identity character-
istics. For a fair comparison, we additionally compare on
the HDTF dataset [24] (where StyleHEAT has been trained



C
o

n
v2

D

C
o

n
v2

D

C
o

n
v2

D

C
o

n
v2

D

F
C

Down-sampling convolutions Shared layers

F
C

F
la

tt
e

n

F
C

F
la

tt
e

n

R
e

p
e

a
t

R
e

sh
a

p
e

Layer-specific Reenactment Block

Shared Reenactment Block

C
o

n
v2

D

C
o

n
v2

D

C
o

n
v2

D

C
o

n
v2

D

Down-sampling convolutions

R
e

p
e

a
t

R
e

p
e

a
t

F
C

Figure 2: Detailed architecture of the two types of Reenactment Blocks, namely the Shared Reenactment Block (top row)
and the Layer-specific Reenactment Block (bottom row).

Layer ℓ Index Layer ℓ Name Resolution Kernel Dim. Cout
ℓ ×Cin

ℓ × kℓ × kℓ

0 Conv1 4× 4 512× 512× 3× 3
1 ToRGB1 4× 4 3× 512× 1× 1
2 Conv2 8× 8 512× 512× 3× 3
3 Conv3 8× 8 512× 512× 3× 3
4 ToRGB2 8× 8 3× 512× 1× 1
5 Conv4 16× 16 512× 512× 3× 3
6 Conv5 16× 16 512× 512× 3× 3
7 ToRGB3 16× 16 3× 512× 1× 1
8 Conv6 32× 32 512× 512× 3× 3
9 Conv7 32× 32 512× 512× 3× 3

10 ToRGB4 32× 32 3× 512× 1× 1
11 Conv8 64× 64 256× 512× 3× 3
12 Conv9 64× 64 256× 256× 3× 3
13 ToRGB5 64× 64 3× 256× 1× 1
14 Conv10 128× 128 128× 256× 3× 3
15 Conv11 128× 128 128× 128× 3× 3
16 ToRGB6 128× 128 3× 128× 1× 1
17 Conv12 256× 256 64× 128× 3× 3
18 Conv13 256× 256 64× 64× 3× 3
19 ToRGB7 256× 256 3× 64× 1× 1

Table 1: Structure of StyleGAN2 generator trained on 256× 256 image resolution.



Layer Input shape Output shape
Conv2D

kernel=(3,3), stride=1, pad=1 B × 512× 7× 7 B × 128× 7× 7

LeakyReLU activation
slope=0.01 B × 128× 7× 7 B × 128× 7× 7

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 7× 7 B × 128× 5× 5

LeakyReLU activation
slope=0.01 B × 128× 5× 5 B × 128× 5× 5

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 5× 5 B × 128× 3× 3

LeakyReLU activation
slope=0.01 B × 128× 3× 3 B × 128× 3× 3

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 3× 3 B × 512× 1× 1

LeakyReLU activation
slope=0.01 B × 512× 1× 1 B × 512× 1× 1

Flatten B × 512× 1× 1 B × 512
FC B × 512 B × 512

Shared FC B × 512 B × (512× 512)
Shared FC B × (512× 512) B × (512× 512)
Reshape B × (512× 512) B × 512× 512× 1× 1
Repeat B × 512× 512× 1× 1 B × 512× 512× 3× 3

Table 2: Architecture of the Shared Reenactment Blocks (B denotes the batch size).

Layer Input shape Output shape
Conv2D

kernel=(3,3), stride=1, pad=1 B × 512× 7× 7 B × 256× 7× 7

LeakyReLU activation
slope=0.01 B × 256× 7× 7 B × 256× 7× 7

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 7× 7 B × 256× 5× 5

LeakyReLU activation
slope=0.01 B × 256× 5× 5 B × 256× 5× 5

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 5× 5 B × 256× 3× 3

LeakyReLU activation
slope=0.01 B × 256× 3× 3 B × 256× 3× 3

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 3× 3 B × 512× 1× 1

LeakyReLU activation
slope=0.01 B × 512× 1× 1 B × 512× 1× 1

Flatten B × 512× 1× 1 B × 512
FC B × 512 B × (Cout

ℓ × Cin
ℓ )

Reshape B × (Cout
ℓ × Cin

ℓ ) B × Cout
ℓ × Cin

ℓ × 1× 1
Repeat B × Cout

ℓ × Cin
ℓ × 1× 1 B × Cout

ℓ × Cin
ℓ × 3× 3

Table 3: Architecture of the Layer-specific Reenactment Blocks. The input on the block has a size of B×512×7×7, where
B is the batch size, while Cin

ℓ and Cout
ℓ are the input and output channels, respectively.



Layer Index ℓ ℓ-th Layer
Name

RB Type

0 Conv1 Shared
2 Conv2 Shared
3 Conv3 Shared
5 Conv4 Shared
6 Conv5 Shared
8 Conv6 Shared
9 Conv7 Shared
11 Conv8 Layer-

specific
12 Conv9 Layer-

specific
14 Conv10 Layer-

specific
15 Conv11 Layer-

specific
17 Conv12 Layer-

specific
18 Conv13 Layer-

specific

Table 4: Convolutional layers of the StyleGAN2 generator
that we propose to modify, altering their weights using the
offsets computed by the hypernetwork.

Method CSIM↑ APD↓ AED↓
StyleHEAT [22] 0.45 8.6 12.9
StyleMask [3] 0.47 5.3 13.2
Ours 0.58 0.9 6.2

Table 5: Quantitative comparisons with StyleHEAT [22]
and StyleMask [3] on the small benchmark with large head
pose differences between the source and target faces.

Method CSIM↑ APD↓ AED↓
StyleHEAT [22] 0.72 1.1 7.5
StyleMask [3] 0.66 1.6 8.8
Ours 0.75 0.38 4.1

Table 6: Quantitative comparisons on self-reenactment with
StyleHEAT [22] and StyleMask [3] on HDTF dataset [24]

on). In Table 6, we provide quantitative results on the test
videos provided by the authors of StyleHEAT [22]. Finally,
Fig. 7 illustrates qualitative comparisons with both Style-
HEAT and StyleMask. As shown, our method evidently
outperforms both StyleHEAT and StyleMask, on identity
preservation and on facial pose transfer.

HyperstyleReal image

(a) HyperStyle [1].
HyperInverterReal image

(b) HyperInverter [6].

Figure 3: Real image inversion and editing results on
CelebA dataset [9] using HyperStyle [1] and HyperIn-
verter [6]. Inside the red boxes are the inverted images,
while on the right and left we show results of head pose
editing using the method of InterFaceGAN [17].

HyperStyle-FDSource OursTarget

Figure 4: Qualitative comparisons against HyperStyle-FD.

5. Benchmark with extreme head pose differ-
ences

We build a small benchmark in order to evaluate our
method on challenging cases where the source and target
faces have large head pose differences. Specifically, consid-



Real image Inverted image

Figure 5: We observe that accessory items such as hats or
glasses are not fully reconstructed.

StyleHEAT StyleMaskSource OursTarget

Figure 6: Qualitative comparisons with StyleHEAT [22]
and StyleMask [3] on VoxCeleb dataset [13].

ering the VoxCeleb1 [13] test dataset, we pick 1000 pairs
of images with large head pose distance (measured as the
average of the absolute differences between the 3 Euler an-
gles). In Fig. 8 we show the distribution of the absolute
pose differences for each Euler angle, namely yaw, pitch
and roll. This benchmark allows us to obtain deeper in-
sights on the behavior of reenactment methods on challeng-

StyleHEAT StyleMaskSource OursTarget

Figure 7: Qualitative comparisons with StyleHEAT [22]
and StyleMask [3] on HDTF dataset [24].

ing conditions.
In Fig. 9, we show comparisons of our method against

the two state-of-the-art face reenactment methods, namely
Fast BL [23] and Rome [11], on image pairs selected from
the small benchmark described above. As shown, the source
and target images have extreme head pose differences which
makes it more challenging for face reenactment methods to
generate realistic images. Nevertheless, our method is able
to synthesize realistic faces even on extreme head poses.
In Fig. 9 we highlight (red boxes) details on the human
faces, such as areas around the mouth and eyes, where our
method creates artifact free results, while Fast BL [23] and
Rome [11] generate blurry unrealistic images.

6. Additional quantitative & qualitative results

In this section, we present additional quantitative and
qualitative results of the proposed method in comparison to
state-of-the-art works. We compare all methods in terms
of their inference time and their overall performance on
the two tasks, namely, self and cross-subject reenactment.
Specifically, in Table 7, we demonstrate the inference time
of each method while reenacting a video of 200 frames. To
help drawing connections between the inference time and
the performance of each method, we also report the per-
formance ranking in Table 7 (referred to as “Perf. Rank”).
Specifically, we consider the evaluation metrics that are re-
ported in Table 1 of the main paper, and rank all methods
with respect to each metric. Then, we average the ranking
positions across all metrics on both self and cross-subject
reenactment, for each method, to obtain its overall perfor-
mance ranking. In Fig. 10, we present a plot of the two



Figure 8: Distribution of the absolute pose differences for each Euler angle (yaw, pitch and roll) in our small benchmark
dataset built from VoxCeleb1 test dataset.

Source OursTarget Fast BL Rome

Figure 9: Qualitative results on the small benchmark with
large head pose differences between the source and target
faces.

metrics (Inference time and Overall Performance Ranking).
We note that our method achieves the best overall perfor-
mance ranking, while also remaining competitive on the
inference time. Additionally, while the inference time of
X2Face [20] and FOMM [18] is low compared to the other
methods, as shown from the qualitative results they generate
images with several visual artifacts.

Moreover, we present further qualitative comparisons on
the VoxCeleb1 [13], as well as quantitative and qualitative
results on VoxCeleb2 [5]. Specifically, in Figs. 11 and 12
we show results on self reenactment, in Figs. 13 and 14 we

Method Inf. time (sec)↓ Perf. Rank ↓
X2Face [20] 11.0 3.5
FOMM [18] 11.0 6.3
Neural [4] 115.0 5.6
Fast BL [23] 61.0 4.0
PIR [14] 54.0 4.3
LSR [12] 110.0 4.2
FD [2] 40.0 2.7
LIA [19] 23.0 5.3
Dual [8] 23.0 6.9
Rome [11] 70.0 3.1
Ours 37.0 1.1

Table 7: Quantitative comparisons on inference time and
overall performance ranking (Perf. Rank) of all methods on
self and cross-subject reenactment tasks (inference time is
calculated while reenacting a video of 200 frames).

show results on cross-subject reenactment, and in Fig. 15
we report results on self reenactment on the benchmark with
extreme head pose differences described in Section 5.

Additionally, we quantitatively compare our method on
the task of self reenactment on the VoxCeleb2 dataset [5]
with the 10 state-of-the-art methods, namely, X2Face [20],
FOMM [18], Neural [4], Fast BL [23], PIR [14], LSR [12],
FD [2], LIA [19], Dual [8], and Rome [11]. In Table 8,
we present the quantitative results on self reenactment. As
shown, our method outperforms all other methods both on
identity preservation (CSIM) and on head pose (APD) and
expression (AED) transfer (similarly to Section 4.1).

Finally, in Figs. 16, 17, we demonstrate results of our
method, both on self and on cross-subject reenactment, on
additional video datasets, namely, FaceForensics [15], 300-
VW [16], and CelebV-HQ [25], showing that the proposed
method can generalise well on different video benchmarks.



Method CSIM↑ APD↓ AED↓
X2Face [20] 0.60 2.4 10.6
FOMM [18] 0.57 5.1 13.6

Neural [4] 0.39 1.4 9.1
Fast BL [23] 0.57 1.1 8.6
PIR [14] 0.57 2.8 10.8
LSR [12] 0.61 1.0 7.5
FD [2] 0.59 1.3 7.3
LIA [19] 0.64 2.5 8.7
Dual [8] 0.15 3.7 12.7
Rome [11] 0.63 1.3 5.9
Ours 0.65 0.5 5.2

Table 8: Quantitative results on the task of self reenactment
on VoxCeleb2 dataset [5].

Overall Performance Ranking

In
fe

re
n

ce
 t

im
e

 (
se

c)

Ours

X2Face FOMM

Fast BL

PIR

LSR

LIA Dual

Rome

FD

Neural

Figure 10: Comparisons in terms of the overall performance
ranking of each method (presented in Table 1 of the main
paper) and their inference time required to reenact a video
of 200 frames. The arrows point towards the best results.

7. Ethics consideration
Neural face reenactment methods allow for the creation

of realistic talking head sequences that resemble the real
ones. Consequently, besides being used for benevolent and
useful purposes, such as in video conferencing, film and
video production, arts, and education, we acknowledge that
face reenactment methods, such as the proposed one, can
also be misused towards malevolent purposes, such as deep-
fake fraud, that can harm individuals and can pose a greater
societal threat.



FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 11: Additional qualitative results and comparisons on self-reenactment on VoxCeleb1 dataset [13]. The first and
second columns show the source and target faces.

FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 12: Qualitative results and comparisons on self-reenactment on VoxCeleb2 dataset [5]. The first and second columns
show the source and target faces.



FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 13: Additional qualitative results and comparisons on cross-subject reenactment on VoxCeleb1 dataset [13]. The first
and second columns show the source and target faces.

FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 14: Qualitative results and comparisons on cross-subject reenactment on VoxCeleb2 dataset [5]. The first and second
columns show the source and target faces, which are from different identities.



FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 15: Additional qualitative results and comparisons on self reenactment using our small benchmark with image pairs
that have large head pose differences. We show that our method presents robust results with artifact-free images, compared
to the other state-of-the-art methods.



Source OursTarget Source OursTarget

Figure 16: Additional qualitative results of our method on other video datasets such as FaceForensics [15] and 300-VW [16].



Source OursTarget Source OursTarget

Figure 17: Additional qualitative results of our method on CelebV-HQ video dataset [25].



References
[1] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and

Amit Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18511–18521, 2022. 1, 2, 5

[2] Stella Bounareli, Vasileios Argyriou, and Georgios Tz-
imiropoulos. Finding directions in gan’s latent space for
neural face reenactment. British Machine Vision Conference
(BMVC), 2022. 2, 7, 8

[3] Stella Bounareli, Christos Tzelepis, Vasileios Argyriou,
Ioannis Patras, and Georgios Tzimiropoulos. Stylemask:
Disentangling the style space of stylegan2 for neural face
reenactment. IEEE Conference on Automatic Face and Ges-
ture Recognition, 2023. 1, 2, 5, 6

[4] Egor Burkov, Igor Pasechnik, Artur Grigorev, and Victor
Lempitsky. Neural head reenactment with latent pose de-
scriptors. In CVPR, 2020. 7, 8

[5] J. S. Chung, A. Nagrani, and A. Zisserman. Voxceleb2: Deep
speaker recognition. In INTERSPEECH, 2018. 1, 7, 8, 9, 10

[6] Tan M Dinh, Anh Tuan Tran, Rang Nguyen, and Binh-Son
Hua. Hyperinverter: Improving stylegan inversion via hy-
pernetwork. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11389–
11398, 2022. 1, 2, 5

[7] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernet-
works. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017. 2

[8] Gee-Sern Hsu, Chun-Hung Tsai, and Hung-Yi Wu. Dual-
generator face reenactment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 642–650, 2022. 7, 8

[9] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019. 2,
5

[10] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 2

[11] Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and
Egor Zakharov. Realistic one-shot mesh-based head avatars.
In European Conference on Computer Vision, pages 345–
362. Springer, 2022. 6, 7, 8

[12] Moustafa Meshry, Saksham Suri, Larry S Davis, and Abhi-
nav Shrivastava. Learned spatial representations for few-shot
talking-head synthesis. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13829–
13838, 2021. 7, 8

[13] A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb:
a large-scale speaker identification dataset. In INTER-
SPEECH, 2017. 1, 2, 6, 7, 9, 10

[14] Yurui Ren, Ge Li, Yuanqi Chen, Thomas H Li, and Shan
Liu. Pirenderer: Controllable portrait image generation via

semantic neural rendering. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 13759–
13768, 2021. 7, 8

[15] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. FaceForen-
sics: A large-scale video dataset for forgery detection in hu-
man faces. arXiv, 2018. 7, 12

[16] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kos-
saifi, Georgios Tzimiropoulos, and Maja Pantic. The first
facial landmark tracking in-the-wild challenge: Benchmark
and results. In Proceedings of the IEEE international con-
ference on computer vision workshops, pages 50–58, 2015.
7, 12

[17] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou.
Interfacegan: Interpreting the disentangled face representa-
tion learned by gans. IEEE transactions on pattern analysis
and machine intelligence, 2020. 2, 5

[18] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model for im-
age animation. Advances in Neural Information Processing
Systems, 32:7137–7147, 2019. 7, 8

[19] Yaohui Wang, Di Yang, Francois Bremond, and Antitza
Dantcheva. Latent image animator: Learning to animate im-
ages via latent space navigation. In International Conference
on Learning Representations, 2021. 7, 8

[20] Olivia Wiles, A Koepke, and Andrew Zisserman. X2face: A
network for controlling face generation using images, audio,
and pose codes. In Proceedings of the European conference
on computer vision (ECCV), pages 670–686, 2018. 7, 8

[21] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021. 1

[22] Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao, Yanbo
Fan, Xuan Wang, Qingyan Bai, Baoyuan Wu, Jue Wang,
and Yujiu Yang. Styleheat: One-shot high-resolution ed-
itable talking face generation via pretrained stylegan. arXiv
preprint arXiv:2203.04036, 2022. 1, 2, 5, 6

[23] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya,
and Victor Lempitsky. Fast bi-layer neural synthesis of one-
shot realistic head avatars. In ECCV, 2020. 6, 7, 8

[24] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-guided one-shot talking face generation with
a high-resolution audio-visual dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3661–3670, 2021. 2, 5, 6

[25] Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei
Tang, Li Zhang, Ziwei Liu, and Chen Change Loy. CelebV-
HQ: A large-scale video facial attributes dataset. In ECCV,
2022. 7, 13


