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A. Training Details

We provide additional training details in this section. All
models were trained using Automatic Mixed Precision on a
single consumer TITAN RTX GPU.

A.1. Optimization

We train for 10k iterations for all datasets. During the
first 2.5k iterations, gradient backpropagation from the pro-
jection head to the backbone is stopped, to avoid noisy
weight updates on the pretrained backbone weights. We
use an AdamW [4] optimizer with weight decay 0.01 and a
linear learning rate decay with linear warm-up for the first
1500 iterations. The chosen learning rates for CMA are
1 × 10−5 (SegFormer-based) and 2 × 10−8 (DeepLabv2-
based), using 1 (SegFormer-based) or 2 (DeepLabv2-based)
adverse-reference image pairs per batch. For the weights of
the projection head, the learning rate is multiplied by a fac-
tor of 10, as it is initialized randomly. The individual loss
weights are λent = 0.01 and λcdc = 1.0 for SegFormer-
based CMA and λent = 1.0 and λcdc = 1.0 for DeepLabv2-
based CMA.

A.2. CDC Loss Hyperparameters

For partitioning the dense feature map into patches, a
7×7 grid is used. Positives and negatives are encoded with
an exponential moving average network using a momen-
tum of 0.9999. Negatives are then stored in a queue of size
65536. The temperature τ of the InfoNCE loss varies de-
pending on the dataset, we use 0.3 for ACDC, 0.03 for Dark
Zurich, 0.3 for RobotCar, and 0.1 for CMU. For eliminating
unreliable patches in the confidence modulation, a threshold
of 0.2 is used throughout.

A.3. Data Handling

Training data augmentation consists of random cropping
to square shape—such that the crop size coincides with the

shorter sidelength of the input—and random horizontal flip-
ping. Note that no resizing is applied.

Test predictions are generated through a sliding window
approach. The windows are square, with a sidelength equal
to the shorter input sidelength. Consecutive windows over-
lap for between 0% and 50% of their sidelength, depending
on the input aspect ratio.

A.4. Baselines

We reimplemented the baselines TENT [9], HCL [3],
and URMA [8] for a fair comparison, carefully following
their published code for reference. The learning rate, loss
weights, as well as method-specific hyperparameters were
separately tuned for each method. For SegFormer-based
HCL, we had to introduce random subsampling of anchors
for the contrastive loss, due to prohibitive memory demands
otherwise.

B. ACG Benchmark
The purpose of ACG is to provide a generalization

benchmark estimating a model’s adverse-condition robust-
ness to diverse inputs, whereby the model is trained on an-
other dataset such as ACDC [7], Mapillary Vistas [5], etc.
The evaluation benchmark consists of training, validation,
and test images from the public datasets Wilddash2 [12],
BDD100K [11], Foggy Zurich [2], and Foggy Driving [6].
Models trained on these four datasets can therefore not be
evaluated on ACG.

B.1. Construction

We constructed the ACG benchmark as follows:

1. For each of Wilddash2, BDD100K, Foggy Driving,
and Foggy Zurich, we inspected all images with public
semantic segmentation annotations and extracted im-
ages depicting fog, night, rain, or snow—or a com-
bination thereof. For Wilddash2 we only considered
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Figure B-1. Number of annotated pixels per class in the ACG benchmark.

images taken in Europe and North America, to confine
the geographical domain shift.

2. For every selected image, we checked the quality of
the semantic segmentation labels. Images with unre-
liable ground-truth were eliminated. For BDD100K,
this step eliminated a majority of images.

3. For selected images from Foggy Driving or Foggy
Zurich, we checked for potential geographical overlap
with ACDC, since all three datasets were recorded in
the greater area of Zurich. Images with geographical
overlap were eliminated.

Through these three steps, we selected 919 images from
a pool of 15173. However, upon closer inspection we
observed that there were no rainy images containing the
“train” class, which would prevent condition-wise evalua-
tion (see Sec. B.2). We therefore collected 3 copyright-
free images from the web depicting rainy street scenes
with trains or trams and finely annotated the pixels of class
“train”. In total, ACG consists of 922 adverse-condition im-
ages with high-quality ground-truth annotations.

The ground-truth annotations follow the labeling con-
vention of Cityscapes [1], consisting of 19 classes.
For Wilddash2, semantic classes were mapped back to
Cityscapes classes according to the mapping given by [12].

B.2. Data Splits

We divide the 922 images into 4 subsets, classified by
condition, to enable condition-wise evaluation. Each image
depicting a nighttime scene was assigned to ACG-night, re-
gardless of the weather condition. For daytime images, each
image was assigned to either ACG-fog, ACG-rain, or ACG-
snow, depending on the dominant weather condition. The
resulting subset sizes are 121 for ACG-fog, 225 for ACG-
rain, 276 for ACG-snow, and 300 for ACG-night.

Table C-1. Effect of individual training losses on ACDC validation
performance.

CMA w/o Lent w/o Lst w/o Lcdc

ACDC val mIoU 67.2 66.7 57.7 60.1

Table C-2. Sensitivity of CMA to the confidence threshold (default
value of 0.2).

confidence threshold 0 0.1 0.2 0.3 0.4 0.5

ACDC val mIoU 66.8 67.1 67.2 67.0 67.0 66.7

B.3. Class Distribution

The numbers of annotated pixels per class are shown in
Fig. B-1. Importantly, each class is also represented within
each condition-subset.

C. Additional Ablations

Effect of Entropy and Self-Training Losses. We show
in Table C-1 the effect of the individual training losses on
ACDC validation performance. Omitting either the self-
training or our CDC loss leads to a large performance drop,
while omitting the entropy loss has a more minor effect.

Sensitivity to Patch Confidence Threshold. Table C-2
shows the sensitivity of CMA to the confidence threshold
value, which is set to 0.2 in Eq. (3).

D. Condition-Wise ACDC Performances

In Tables D-1, D-2, D-3, D-4 we report the test set results
for the condition-wise evaluations on ACDC-fog, ACDC-
night, ACDC-rain, and ACDC-snow. For all the methods,
Cityscapes is used as the source dataset and the full ACDC
training set as the target dataset. On ACDC-night, ACDC-
rain, and ACDC-snow, CMA outperforms all other meth-
ods, while being second best on ACDC-fog.



E. Source Model Predictions
Fig. E-1 shows SegFormer source model predictions on

corresponding reference (normal condition, left) and tar-
get (adverse condition, right) images of the ACDC dataset.
Overall, the Cityscapes-trained source model produces
more accurate predictions on the reference images.

F. Qualitative Results
We provide more qualitative segmentation results on ran-

domly selected ACDC validation images in Fig. F-1.
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Reference Image Reference Prediction Target Prediction Target Image

Figure E-1. Comparison of SegFormer predictions on pairs of reference and target images.

Table D-1. Comparison to the state of the art in model adaptation on Cityscapes→ACDC, with reported performance on the ACDC-fog
test set.

Method
ACDC-fog IoU ↑
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Source model

Se
gF

or
m

er
[1

0] 87.8 60.7 73.1 44.5 30.1 42.1 52.3 64.4 81.4 68.8 93.4 51.1 53.2 78.4 66.0 39.7 75.1 43.2 47.4 60.7

TENT [9] 83.0 61.1 68.2 44.1 30.4 44.1 52.1 64.4 81.1 69.3 89.9 50.9 54.7 78.6 67.1 39.5 75.4 45.9 47.1 60.4

HCL [3] 88.5 63.2 79.8 45.3 30.6 44.7 53.7 65.9 81.8 69.6 95.5 52.5 55.0 79.4 68.0 40.7 74.0 40.7 46.9 61.9

URMA [8] 89.3 61.8 87.9 51.4 36.3 52.3 58.1 67.9 85.7 71.8 97.2 54.5 62.5 82.3 70.6 62.0 82.0 52.9 36.2 66.5
CMA 93.5 75.3 88.6 53.4 33.0 52.2 58.2 67.0 86.9 71.5 97.8 55.6 42.0 80.4 70.0 54.8 83.3 43.0 37.4 65.5

Table D-2. Comparison to the state of the art in model adaptation on Cityscapes→ACDC, with reported performance on the ACDC-night
test set.

Method
ACDC-night IoU ↑
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[1

0] 87.9 52.7 64.1 34.0 20.2 37.2 34.5 40.2 51.8 32.4 6.6 54.5 31.4 72.8 49.6 65.2 54.1 34.0 41.4 45.5

TENT [9] 85.9 53.3 64.3 34.4 20.2 37.8 35.2 40.3 52.3 33.9 2.9 53.8 31.9 72.5 46.2 63.8 53.8 34.0 40.9 45.1

HCL [3] 88.2 54.3 64.4 35.3 20.7 39.1 36.8 40.4 52.0 32.1 2.8 55.2 33.7 73.5 49.2 66.5 58.1 35.4 41.7 46.3

URMA [8] 90.6 60.1 71.9 42.6 26.7 47.5 47.5 47.4 46.7 42.9 0.4 54.4 34.6 76.8 42.1 65.6 71.0 38.0 37.2 49.7

CMA 95.2 77.5 84.3 43.9 30.9 49.4 52.0 49.6 74.2 51.2 78.4 61.4 41.2 79.2 63.6 75.1 75.8 34.6 47.3 61.3



Table D-3. Comparison to the state of the art in model adaptation on Cityscapes→ACDC, with reported performance on the ACDC-rain
test set.

Method
ACDC-rain IoU ↑

ro
ad

si
de

w
.

bu
ild

.

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

t.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
c.

bi
cy

cl
e

m
ea

n

Source model

Se
gF

or
m

er
[1

0] 83.1 46.7 89.5 40.5 47.2 54.0 67.0 66.9 92.6 40.2 97.6 63.5 24.6 87.8 65.1 72.7 81.0 42.8 58.0 64.3

TENT [9] 83.1 47.2 89.2 40.9 47.6 54.5 66.9 67.3 92.7 41.4 97.1 63.7 25.4 87.9 65.3 74.8 82.2 43.1 57.4 64.6

HCL [3] 84.2 50.5 90.1 42.7 48.9 57.0 68.5 69.0 93.0 40.9 97.8 65.4 26.1 88.7 68.1 74.4 80.4 43.8 58.0 65.6

URMA [8] 87.2 61.0 92.4 52.0 51.9 57.2 72.0 73.1 93.8 46.1 98.1 68.8 31.8 90.6 73.2 85.9 86.9 51.7 51.9 69.8

CMA 93.3 76.3 92.8 58.1 58.2 61.2 70.4 71.8 93.8 45.0 97.9 67.4 36.8 89.7 72.2 88.5 86.4 50.5 66.7 72.5

Table D-4. Comparison to the state of the art in model adaptation on Cityscapes→ACDC, with reported performance on the ACDC-snow
test set.

Method
ACDC-snow IoU ↑
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[1

0] 82.0 44.9 80.5 30.4 45.4 46.8 65.6 63.1 86.8 5.2 93.6 67.8 40.8 87.1 56.4 76.7 83.1 32.8 60.3 60.5

TENT [9] 81.8 45.6 79.1 31.3 45.4 48.0 65.5 63.3 86.9 4.6 91.8 67.4 43.1 87.0 53.3 76.6 83.2 33.6 61.9 60.5

HCL [3] 82.9 47.4 83.2 35.4 46.8 50.1 67.8 64.9 87.7 5.3 95.6 69.8 43.9 87.6 60.1 76.9 83.2 35.3 63.4 62.5

URMA [8] 88.0 58.9 87.2 52.0 51.7 57.8 75.6 70.3 88.8 5.8 97.1 75.0 63.6 89.0 69.6 79.0 89.8 50.1 65.4 69.2

CMA 92.4 70.5 88.3 50.4 55.6 56.3 74.8 71.1 90.8 29.4 96.9 77.4 63.5 90.1 63.5 79.6 89.0 45.6 73.9 71.5



Image TENT [9] HCL [3] URMA [8] CMA Ground Truth

Figure F-1. Qualitative segmentation results of SegFormer-based adaptation methods on ACDC validation images.


