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This supplementary document provides more details
about our experimental setting in Sec. [TJand supplementary
results and ablations in Sec. [2| For videos and ultra-high
resolution results up to 4K, please see the supplementary
HTML page.

1. Detailed Experimental Setting
1.1. Architecture and Hyperparameters

In the following, we describe the architecture of the prior
and the finetuned model in detail and list the hyperparame-
ters we used for training and finetuning our models.

1.1.1 Prior Model

Following Mip-NeRF [1]], the prior model consists of two
MLPs. The first MLP is the proposal network that only
predicts density. The second MLP a neural radiance field
(NeRF) that predicts both density and colour. The proposal
MLP has 4 linear layers with (256 +512) x 256 parameters:
256 neurons for the features from the previous branch and
512 neurons for the concatenated latent code. The NeRF
MLP has 8 linear layers with (1024 +512) x 1024 parame-
ters: 1024 neurons for the features from the previous branch
and 512 neurons for the concatenated latent code. The to-
tal parameter count of our prior model including all latent
codes is 14.6 Mio.

During training and inference, we use three hierarchical
sampling steps [[10]. The first step uses 256 proposal sam-
ples, the second step 256 refined proposal samples, and the
third step 128 NeRF samples.

We use the same number of positional encoding frequen-
cies for both the proposal and the NeRF MLPs. The inte-
grated positional encoding for the trunk networks 4 (-) has
12 levels; the positional encoding 7 (-) for the view direc-
tion has 4 levels, and it appends the view direction without
positional encoding. The view branch of the NeRF MLP
has a bottleneck with width 256. The positionally-encoded

view direction is concatenated to the bottleneck features and
processed by a linear layer of width (256 4+ 27) x 128 be-
fore being projected to RGB (256 bottleneck features and
27 features from the positional encoding of the view direc-
tion).

We optimise the prior model as an auto-decoder [2],
where each identity has a latent code with 512 dimensions.
Each training step samples 128 random rays from 8 views of
64 identities, which yields a batch size of 65, 536. We train
our prior model for 1 Mio. steps, which takes 144 hours (ap-
proximately 6 days) on 36 TPUs. We optimise our model
using Adam [7]] with 81 = 0.9, 52 = 0.999. The learning
rate starts at 0.002 and exponentially decays to 0.00002. We
clip gradients with norms larger than 0.001.

1.1.2 Inversion

We perform inversion on the prior model to find a good ini-
tialisation for the finetuning. In each step, we sample 8 ran-
dom patches of size 32 x 32 from all available views. We
initialise the new latent code with zeros. The optimisation
uses Adam with 5; = 0.9, 82 = 0.999 and a fixed learn-
ing rate of 0.001. We optimise for 1, 500 steps on 4 TPUs,
which takes 10 minutes.

1.1.3 Finetuned Model

The architecture of the finetuned model is the same as the
prior model, except for an additional linear layer that maps
the features from the trunk to 3-d normal vectors.

We create batches of 8,912 rays by sampling random
pixels from all available views. We start with a learning rate
of 0.001 and exponentially decay to 0.00002. The number
of optimisation step depends on the resolution. For low-
resolution (256 x 256), we optimise for 25, 000 steps. We
increase the number of optimisation steps for higher res-
olutions: 50,000 steps for 512 x 512; 100,000 steps for
1024 x 1024; 200, 000 steps for 2048 x 2048; and 300, 000



Figure 1. Visualisation of the five keypoints used for aligning cap-
tured subjects to a canonical pose.

steps for 4096 x 4096. We always optimise on four TPUs.
The model finetuning takes 4 hours for 25, 000 steps and
linearly increases for more training steps.

1.1.4 Camera Alignment

A crucial preprocessing step is to align all cameras to a
canonical pose. As described in the main paper, we estimate
five 3D keypoints on the outer eye corners, nose, mouth, and
chin and calculate a similarity transform the the same five
keypoints in a canonical space using Procrustes analysis.
The canonical keypoints are computed as the median key-
point location across the first 260 subjects in our training
set. Fig.[[]shows an example.

1.2. Studio Dataset

Our studio dataset consists of 1450 volunteers who were
prompted to optionally self-report various characteristics
like age, gender, skin colour and hair colour. We report the
statistics here and in Fig. 60% of the participants were
male, 38% female, 0.2% non-binary and the rest preferred
not to state. The age of the participants was heavily centred
in the 24-50 age group. We also note the bias in appearance
characteristics.

The participants were also given the option to wear or
remove their glasses, hence a very small percentage ~1%
wore glasses during capture. The capture was performed
over a period of many months. Initial captures contain a
black background and was later changed to green screen to
allow for better foreground segmentation if required. We do
not mask out the background during prior model training.
During finetuning, we estimate a foreground mask with a
robust pretrained estimator [15]. Hence, our method works
without any constraints on the background, as long as the
camera poses are accurate.

Ly  Luorma | PSNRT SSIM1 LPIPS |
X X 2391 0.7787 0.2233
X v 24.79 0.7839 0.2066
v X 25.53 0.7996 0.1963
v v 25.69 0.8040 0.1905

Table 1. Ablation on regularisation when finetuning the model.
The scores have been computed on models trained on two views
with resolution 1024 x 1024 and averaged across six views of three
holdout subjects. Please refer to Fig. [7]for visuals.

2. Supplementary Results and Analysis

This section supplements the results in the main paper
with more visuals and detailed metrics. We provide supple-
mentary results for comparisons related works in Sec. [2.1]
more visuals for one- and few-shot synthesis in the studio
setting and in-the-wild in Sec. and a detailed analysis
of our ablations in Sec.

2.1. Supplementary Comparisons

This section supplements the comparison from the main
paper with detailed metrics and visuals for individual hold-
out subjects.

2.1.1 Comparisons on Our Studio Dataset

This section provides supplementary results on our mul-
tiview studio dataset described in the main paper and in
Sec.[I.2] Note that our goal is novel view synthesis so we
refrain from comparing with methods that explicitly target
geometry reconstruction [[13} 14, [17, 22} 24].

We train the competing methods [4, (9, 12,19, 23] on our
dataset and compare with our results in Tbl. [6]

In the following, we describe the experimental details for
each competing method.

For KeypointNeRF, we use their publicly available code
and their default training and network settings. We man-
ually chose 13 keypoints that closely resemble the ones
shown in their paper (Fig. and compute the near and far
planes from our own dataset. We made a considerable effort
to train them at 1K resolution, but we found that their results
at the resolution 256 is of much higher quality than their re-
sults at 1K. Therefore, we present their results at both 1K
resolution (Tbl. [6) and at 256 resolution (Tbl. [5). For the
lower resolution comparison, we compare with our lower-
resolution prior model trained at resolution 256 x 384.

For the comparison with RegNeRF [11]], we train their
model with the default settings provided by the authors for
the DTU dataset [6], except for adjusting the near / far
planes and scene scaling. We also disable the loss from the
appearance regulariser because the model is not available.

For FreeNeRF, we implement their frequency regularisa-
tion with a 90% schedule into our pipeline. We do not em-



Figure 2. Distribution of characteristics in our dataset: we report the percentage distribution of our dataset by age, gender, skin colour and

hair colour.
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Figure 3. Visual comparison with KeypointNeRF [9] on low-resolution. Please see Tab. [5|for metrics.

ploy their occlusion regularisation because it causes trans-
parent surfaces and floaters on our dataset.

For learnit [19], we adapt their publicly available note-
book to work with our dataset. For training the meta model,
we set the batch size to 4096, the number of inner steps to
64, the number of samples along the ray to 128, and train
for 15,000 steps. We run the inference-time optimisation

for the same number of steps as ours: 100,000 steps.

For the EG3D-based prior, we train a prior model with a
triplane representation as proposed in Chan et al. [4]. The
model is trained as an auto-decoder model similar to ours.
We simultaneously optimize a per-identity latent code and
the network weights to obtain an EG3D prior model that is
finetuned to sparse views of a target subject for the same



Input Ground Truth | RegNeRF [12] EG3D-based Prior [4] KeypointNeRF [9] DINER [16] Ours

Figure 4. Comparison with the state-of-the-art for novel view synthesis from sparse views on holdout identities from FaceScape [25]. For
each identities, given four views as input, we show novel view reconstruction results and the L1 residue.

Objective PSNR 1 SSIM LPIPS |
Subject A B C | A B cC | A B C
arg ming 26.07 27.21 22.90[0.7949 0.8000 0.79980.1823 0.1651 0.2126

(Ours) 26.55 27.30 23.22|0.8113 0.7996 0.8009 |0.1962 0.1650 0.2102

arg mlnglargel s Wiarget

Table 2. The model finetuning performs best when optimising both the model parameters Orgc+ and the latent code Wearget. All metrics
were computed after finetuning to two views at 1K resolution. Visually, the optimisation results look very similar, see Fig.[§]

number of steps as ours. We do not apply our additional 1024 x 1024. The triplane resolution is 256 x 256 and the
regularisers when finetuning EG3D. per-identity latent codes have dimensionality 512. Since the

We train the EG3D prior on low-resolution images at EG3D model requires rendering the full image, we reduce
resolution 256 x 256 that are super-resolved to resolution the number of initial samples per ray to 64 and the number



Figure 5. Single image reconstruction results from the main paper at higher resolution. The top row shows the input image
captured in a studio setup. The rows below show synthesised views around the subject face using the image in the top row
for model fitting. The inlays show the normals (top) and depth (bottom).



Figure 6. In-the-wild Results at Higher Resolution. We reconstruct a target identity from two images acquired with a consumer camera
(left). Note how the novel views can extrapolate from the input camera angles. The inlays show the normals (top) and depth (bottom). The

hair density is low, thus the grey normal colour in that region. We encourage the reader to see the supp. mat. for the high-resolution results
and videos.
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Figure 7. Visual results when applying regularisers. Training without regularisers (Lrccon + Lprop, first column) leads to strong colour
distortions for unseen views. Adding a regularisation loss on the model weights that process the view direction mitigates the colour
distortions but yields fuzzy surfaces (L., second column). Our final model employs an additional regulariser on predicted normals [21]] to

obtain well-defined surfaces (Lpormal, last column).

Initialisation PSNR 1 SSIM 1t LPIPS |
Subject A B C A B C A B C
Mean 25.39 26.44 22.00|0.7963 0.7913 0.7927(0.1917 0.1749 0.2210
Noise 25.21 26.32 22.4410.7993 0.7911 0.7966| 0.206 0.1766 0.2169
Zeros 25.32 26.37 22.25|0.7956 0.7927 0.7939|0.1917 0.1732 0.2183
Furthest 24.07 25.57 22.09|0.7884 0.7829 0.7915(0.1997 0.1875 0.2250
Nearest 25.49 25.68 22.05|0.7934 0.7818 0.7948|0.1915 0.1852 0.2240
Inversion (Ours) 26.55 27.30 23.22|0.8113 0.7996 0.8009 |0.1962 0.1650 0.2102

Table 3. Ablation on initialisation strategies for Wi for finetuning. This table lists metrics computed on face crops of 6 holdout views
at resolution 1024 x 1024. Furthest (nearest) indicate initialising the latent code with the least (most) similar training subject. Figure[9]

shows visuals examples.

of importance samples to 8.

For all methods, we perform the same inference-time
bounding box based culling as we did for our method. Ta-
ble E] lists metrics for experiments on 2, 3, 5, and 7 views
and Fig. [12] [T3] and [I4]show visual examples. Our method
consistently outperforms related works.

We do not compare with DINER [16], Sparse NeRF [5]],
and SPARF [20]] on our dataset because their training code

is not publicly available at the time of submission.

2.1.2 Comparison on FaceScape

Figure 4| adds more examples for the comparison with
Facescape [235]], and Tbl. lists metrics.

For the comparison on FaceScape [25], we obtain the
outputs directly from the authors of DINER [16]. For each
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Figure 8. Effect of optimising only the model parameters e (top row) and optimising both the model parameters and the latent code
Wiarget (bottom row, Ours). The visual results are very similar. Tbl. lists quantitative metrics.

Mean Noise Zeros
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Figure 9. Visual comparison of different initialisation techniques. When the geometry is not initialised correctly at the start of finetuning,
the final result can contain artifacts like a second ear, an unrealistic forehead, and a fuzzy surface. Starting from the inversion result
mitigates these artifacts. Please see the text for an explanation of the different initialisation techniques and Tbl. [3]for metrics.

Inputs

Figure 10. Out-of-distribution facial expressions. Our model was
trained on neutral faces with a closed mouth. It can handle mild
expressions but fails for strong expressions and teeth. We show
a novel view with insets of the inversion result (top-left), normals
(top-right) and a zoom-in patch (bottom-right).

target identity, we perform model finetuning on two differ-
ent subset of four views and average the scores. Since we

#Views | PSNRT SSIM{ LPIPS |
1 2337 0.7658  0.2189
2 2569  0.8040  0.1905
3 27.16  0.8275  0.1675
5 2833 0.8445  0.1651
7 2924 0.8600  0.1539

Table 4. Ablation on the performance for different number of
views when finetuning the model. The scores are computed on
models trained on images with resolution 1024 x 1024.

develop our method on neutral faces, we filter out faces with
non-neutral expressions.

For the comparison with RegNeRF [11], we follow
the same protocol as described in Sec. 2.1.1] We follow



Method PSNR t

Subject A B C A

SSIM 1 LPIPS |
B C A B C

KeypointNeRF [9] 24.47 23.42 20.33

0.7887 0.7736 0.7387

0.1866 0.1991 0.2462

Ours 28.31 29.00 23.92

0.8703 0.8814 0.8321

0.1025 0.0937 0.1484

Table 5. Comparison with KeypointNeRF [9]] on our dataset. Despite considerable efforts, their implementation did not produce high-
quality results at 1K resolution, hence, we compare on resolution 256 x 256. Please refer to Fig.[3] for visuals and Tbl. [f]for results at 1K

resolution.

Method PSNR 1

# Views Subject A B C

SSIM 1 LPIPS |
A B C A B C

Learnit 22.07 21.18 16.86
EG3D-based prior 20.25 20.60
RegNeRF 20.63 19.93
FreeNeRF 17.24 14.48
KeypointNeRF 23.80 23.45
Ours 26.55 27.30

20.63
13.35
21.11

18.24

23.22

0.7870 0.7765 0.7513|0.3068 0.3195 0.3635
0.7633 0.7575 0.7556 {0.2678 0.2853 0.3159
0.7468 0.7361 0.7468 |0.2791 0.2993 0.2791
0.7091 0.6619 0.6675|0.2711 0.3140 0.3428
0.7964 0.7832 0.7838 10.2542 0.2628 0.2969
0.8113 0.7996 0.8009 | 0.1962 0.1650 0.2102

Learnit 22.99 22.53

EG3D-based prior 22.26 21.91

3 RegNeRF 22.62 23.12
FreeNeRF 24.71 21.74
KeypointNeRF 24.62 24.52

Ours 27.89 28.86

19.15

20.26
21.52
22.19

19.60

24.72

0.7939 0.7847 0.7775]0.2981 0.3031 0.3473
0.7902 0.7781 0.7823]0.2649 0.2819 0.3057
0.7794 0.7654 0.7714]0.2654 0.2768 0.3043
0.7962 0.7582 0.7757 [0.2150 0.2314 0.2622
0.8013 0.7904 0.7913]0.2364 0.2449 0.2751
0.8268 0.8305 0.82520.1633 0.1498 0.1893

Learnit 23.03 23.01

EG3D-based prior 20.16 21.32

5 RegNeRF 24.85 23.56
FreeNeRF 28.10 27.37
KeypointNeRF 24.38 24.29

Ours 29.55 29.27

19.13
20.93

22.29

18.54

24.14

26.17

0.7935 0.7874 0.774210.2991 0.3011 0.3494
0.7938 0.7832 0.778310.2694 0.2829 0.3137
0.7944 0.7787 0.7908 |0.2611 0.2753 0.2919
0.8291 0.8217 0.8274|0.1760 0.2022 0.2245
0.7969 0.7867 0.7864 |0.2388 0.2434 0.2743
0.8466 0.8452 0.8417 | 0.1560 0.1483 0.1910

Learnit 23.60 23.10

EG3D-based prior 20.05 21.26

7 RegNeRF 27.73 26.36
FreeNeRF 28.09 25.03
KeypointNeRF 23.84 23.97

Ours 29.54 30.42

18.31
19.45
24.55
20.03
22.11

27.76

0.7984 0.7887 0.76590.2961 0.3000 0.3506
0.7991 0.7890 0.7890|0.2690 0.2815 0.3130
0.8229 0.8055 0.8225]0.2437 0.2589 0.2671
0.8392 0.8027 0.7936|0.1704 0.2292 0.2458
0.7902 0.7811 0.779310.2430 0.2477 0.2829
0.8564 0.8639 0.8598 |0.1510 0.1353 0.1755

Table 6. Comparison with related works at 1K resolution on our studio dataset. We compare with Learnit [19], EG3D-based prior [4],
RegNeRF [12], FreeNeRF [23]], and KeypointNeRF [9] on different number of input views ranging from two to seven. Our method
outperforms the related works by a clear margin. For a visual comparison, please refer to Figures[12][T3] and [T4]

Figure 11. Keypoints used for training KeypointNeRF [9] with our
data.

the default settings provided by the authors for the DTU
dataset [6]], but adjust the near / far planes and scene scaling.
Again, we disable the loss from the appearance regulariser.

For the EG3D-based prior [3], we train their model on
Celeb-A [8] dataset at a 256 tri-plane and image resolution
without the super-resolution module to ensure 3D consistent
results. We note that their discretised volume representation
leads to blurry results.

2.2. Few-shot Synthesis

Ultra High-res Our main setting is fitting to two or more
views at a ultra-high resolution up to 4K. This goes far be-
yond the resolution of the prior model (512 x 768). Using
at least two views provides the coverage from side angles
such that the model can reconstruct intricate details like in-
dividual skin pores or a beard, which are not visible at lower
resolutions. Please see the main paper and the supplemen-
tary HTML page for results.



Method
Subject

PSNR 1

122 212 340 344 | 122

SSIM 1
212 340

LPIPS |

344 122 212 340 344

23.27
23.46
24.77
25.79

26.15 22.68
24.59 23.53
28.97 24.95
29.78 26.27

24.54
22.10
25.60
26.45

EG3D-based prior [3]
KeypointNeRF [9]
RegNeRF [12]
DINER [16]

0.8678
0.9171
0.8903
0.9382

0.9030 0.8862
0.9372 0.9187
0.9390 0.9129
0.9597 0.9434

0.8844
0.9025
0.8908
0.9324

0.1504 0.1281 0.1228
0.0940 0.0681 0.0743
0.1334 0.0892 0.1001
0.0672 0.0672 0.0540

0.1357
0.0919
0.1232
0.0677

Ours 27.40 32.03 26.69 25.51

0.9359

0.9721 0.9489 0.9135(0.0671 0.0355 0.0533 0.0761

Table 7. Comparison with the state-of-the-art for novel view synthesis from sparse views on Facescape [25]. This table supplements the
main paper with individual metrics for each of the four test subjects. For a visual comparison, please refer to Fig. ]

Single Image To showcase the robustness of our method,
we show results for synthesising novel views from as little
as a single image at the resolution of our prior model (512 x
768), see the main paper and Fig.[5]

In-the-wild Fig. [6] shows examples for in-the-wild cap-
tures with a mobile camera. The supplementary HTML
page shows videos and adds high resolution results for in-
the-wild captures with a smartphone camera.

2.3. Ablation

We perform extensive ablations on our prior model and
on the finetuning algorithm. For the prior model, we ablate
the impact of the number of training identities and the prior
model resolution (Tbl. [§). For the finetuning algorithm, we
ablate regularisation terms (Tbl. [T] and Fig. [7), number of
views (Tbl. {] and Fig. [12] [I3] and [T4), and initialisation
techniques (Tbl. [3). We also ablate the effect of finetuning
the full model including the latent codes vs. only finetuning
the model parameters (Tbl. 2] and Fig. [g).

We provide all metrics cropped to the face region and
evaluate on six holdout views to have comparable numbers
across all ablations. All metrics are computed after fine-
tuning for each of the three holdout subjects at resolution
1024 x 1024.

2.3.1 Prior Model

Table [§] ablates the effect of different variants of our prior
model. We compare these variants of the prior model: lower
resolution (256 x 384 instead of 512 x 768) and fewer train-
ing identities. The results show that a more diverse prior
model performs better while a lower resolution prior model
might not necessarily be required.

2.3.2 Model Finetuning

Initialisation This supplementary document comple-
ments the ablations in the main paper with metrics showing
the benefits of the chosen regularisation (Tbl.[T]and Fig.
and visual examples for different initialisation techniques
(Tbl. [T] and Fig. O). For the Nearest (Furthest) Neighbour

# Identities Resolution | PSNR1 SSIM 1 LPIPS |
15 512 x 768 24.25 0.7917 0.2187

350 512 x 768 24.62 0.7926 0.1985

750 512 x 768 25.43 0.7935 0.2035

1450 256 x 384 25.99 0.8034 0.1810

1450 512 x 768 25.69 0.8040 0.1905

Table 8. Ablation on the prior model. We train variants of our prior
model at lower resolution and with fewer identities. The metrics
are computed after finetuning to two views at resolution 1024 x
1024.

initialisation, we compute image embeddings using a pre-
trained face recognition network [18]. We compute the
similarity of the mean embedding of all target images with
embeddings computed on a frontal rendering of all recon-
structed training identities.

Number of Views We also provide a supplementary abla-
tion on the performance when a different number of views
are available in Tbl. d] Figures [12] [I3] and [14), and the
supplementary HTML page shows visual results.

Frozen Latent Code Table 2] lists metrics and Fig.
shows the rendered images. We do not observe a strong
difference in performance.

2.4. Limitations

Our model is trained on neutral faces with a closed
mouth. It can handle mild expressions (e.g., closed eyes
and a slightly open mouth) but fails for strong expressions
and teeth, see Fig.

While our results show robustness to in-the-wild set-
tings, it is sensitive to correct camera calibration. In the
reconstruction, this is particularly noticeable for thin struc-
tures like the eyes and eyelids. We also assume that the
subject does not move during the capture.

Also, our prior model does not cover accessories like
glasses or hats and reconstructions thereof are therefore not
3D consistent. Please see the supplementary HTML page
for examples.
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Figure 12. Comparison with related works at 1K resolution on our studio dataset. We compare with Learnit [19], EG3D [4]], RegNeRF [12],
FreeNeRF [23]], and KeypointNeRF [9] on different number of input views ranging from two to seven. Please see Tbl. @for metrics.
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Figure 13. Comparison with related works at 1K resolution on our studio dataset. We compare with Learnit [19], EG3D [4], RegNeRF [12],
FreeNeRF [23]], and KeypointNeRF [9] on different number of input views ranging from two to seven. Please see Tbl. @for metrics.
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Figure 14. Comparison with related works at 1K resolution on our studio dataset. We compare with Learnit [19], EG3D [4], RegNeRF [12],
FreeNeRF [23]], and KeypointNeRF [9] on different number of input views ranging from two to seven. Please see Tbl. @for metrics.



