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A. Implementations details

FS-DETR extends Conditional DETR [11] (see Sec-
tion 3), and was pre-trained and trained on a single node
with 8 P40 GPUs. Following [4], the ResNet50 [©] backbone
is initialized from SwAV [3] and kept frozen. Pre-training
makes use of ImageNet-100 without labels, with object pro-
posals detection as a pretext task.

Pre-training hyper-parameters were set to: Batch size of
32 per GPU, AdamW optimizer [|0] with a learning rate of
10~*, frozen backbone CNN, path dropout of 0.1, training
for 60 epochs with the learning rate decreased by factor of 10
after 40 epochs. When using larger images for pre-training
(i.e. containing complex scenes) the batch size is decreased
to 2.

Training hyper-parameters were set to: Batch size of 2
per GPU, SGD with momentum (0.9) [12] with the learning
rate initially set to 51, path dropout of 0.1, training for 30
epochs with the learning rate decreased by a factor of 10 after
20 epochs (and respectively 15 for COCO). Augmentation
followed DETR: input images were resized such that the
short axis is 480 at least and 800 pixels at most, and the long
side is, at most, 1333 pixels, and randomly cropped with 0.5
probability.

Patch augmentation hyper-parameters. The templates are
cropped tightly based on the bounding box and then rescaled
to a 128 x 128px image. During training we apply the
following augmentations: color jittering, with 0.8 probability
and 0.4 intensity, random gray scale (0.2 probability) and
Gaussian blur with a probability of 0.5.

B. Pre-training process

Transformer based architectures are known to generally
be more data-hungry than their homologous CNNs [5, 2]. To
alleviate this, we introduce a label-free pre-training step that
closely mimics the training stage.

More specifically, at train time, for any given input image,
we crop a set of patches according to the object proposals
produced by Selective Search [17] !. Each of these patches
represents an object (belonging to some class) and can be

I'Selective Search is a training-free generic region proposal algorithm

mapped to a pseudo-class, by associating it to a different
pseudo-class embedding. Note, that random patches can be
used too, but the former leads to faster convergence. The goal
of the network is to predict the location of these patches (i.e.
object templates). To make the task harder, the patches (tem-
plates) are augmented using a set of random transformations
before being passed to the backbone. Finally, the network
is trained using a regression (for the bounding boxes) and
a classification loss. As opposed to the supervised training
stage, the classification loss is reduced to a binary classi-
fication problem initially: object/no object and then to the
proposed loss, after this warm-up. The model is then trained
using the hyper-parameters described in Section A while the
ResNet based backone is initialised from a model pre-trained
on Imagenet without supervision (SWAV [3]). Note that
unlike [4, 1] that also make use of unsupervised detection-
centric training, our work concatentes a set of templates as
prompts, instead of grouped-based summation, uses a dif-
fernt trainign objective and makes use of negative templates.
The process is illustrated in Fig. 1.
Pre-training dataset For our DETR pre-training, we used
the images belonging to the base classes from COCO (60
classes in total) and ImageNet-100 (a subset of ImageNet
introduced in [16]). We note the following: firstly, there is no
overlap between COCO base classes and VOC and COCO
novel classes. Secondly, ImageNet-100 contains classes that
can be matched to 7 out of 20 VOC classes (bird, cat, dog,
boat, car, motorcycle and chair). Specifically, split-1 of
VOC novel classes contains 2/5 classes (bird and motorbike)
that overlap with ImageNet-100, split-2 0/5 and split-3 3/5
(boat, cat and motorbike). Please note that NONE of the
labels in ImageNet-100 (or COCO) are used at any stage of
the pre-training. While we agree that the underlying data
distribution, even for unsupervised learning is important,
judging from the results from Tables 1 and 2 the gains in
absolute terms offered by our approach are consistent across
all 3 sets (note that split-2 has no overlap at all).

We note that, recent state-of-the-art methods (e.g. Fan
et al [6], QA-FewShot [7], DeFRCN [13]) make use of a

that computes a hierarchical grouping of image regions based on color,
texture, size and shape, and hence, has no notion of object classes.



backbone pre-trained with full supervision on the entire Ima-
geNet, same which includes all VOC/COCO novel classes.
In this regard, we trained FS-DETR initialized from a back-
bone pre-trained on the entirety of Imagenet for classification
using full supervision (e.g. same as [0, 7, 13]). Preliminary
results shown in Tab. 1 (which could likely be improved
from hyper-parameter optimization) indicate an overall im-
provement of approx. 1.5%. This highlights that the pre-
training data used in the proposed work doesn’t offer any
advantage over prior art approaches that use fully supervised
pre-trained backbones. Further to this, DeFRCN [13] ex-
perimented with using a backbone pre-trained on ImageNet
without labels (SWAV weights - same as ours) which resulted
in substantially degraded performance of approx. 5.0%.

Table 1. Impact of different initialisation of backbone on the PAS-
CAL VOC dataset (Novel Set 1).

Novel Set 1
1 2 3 5 10

45.0 48.5 515 52.7 56.1
47.1 499 525 53.8 57.0

Approach

FS-DETR (Swav)
FS-DETR (ImageNet)

C. Qualitative evaluation

Fig. 2 shows 1-shot detection examples of FS-DETR ,
with success cases shown on the first three columns, and fail
cases on the right-most column. The image on top-left of
the figure, illustrates an important and unique property of
FS-DETR : Two novel classes coexist in a single image, and
FS-DETR is able to successfully detect both of them at the
same time.

Fig. 3 shows the effect of varying the 1-shot template
used during novel class detection. There, smaller images
refer to the templates used for 1-shot detection on the paired
larger image. From the left-most two pairs of columns, it
can be appreciated that even under large template visual
variability, FS-DETR proves to be extremely robust, with
detections hardly affected by the template change. The right-
most illustrates a failure case, where the sofa fails to be
detected.

Additionally, in Fig. 4 we visualise the attention weights
between the visual prompts and the encoded image features.
Notice that our network learns to attend to parts of the target
image that are semantically similar to the provided templates
that are present in the target image.

D. Discussion, challenges and limitations

Herein we offer a pertinent discussion on some things
we tried but didn’t work, defining some of the limitations
and challenges that arise within the proposed framework and
more so in general for FSOD using images within DETR
framework.

D.1. Few-shot object detection objective ambiguity

A general limitation of few shot object recognition sys-
tems, trained and/or tested using one or more visual ex-
amples is the ill-definess of what represents a class. For
example, presenting a template depicting a dog could re-
quire identifying the class “dog”, “bulldog”(i.e. find dogs
of a given bred), “a white dog” etc. While as the number
of examples increases the ambiguity decreases, the problem
is not fully solvable within the visual domain. A natural
solution to this problem could be provided by constructing
the templates using natural language. While an interesting
solution, this goes beyond the scope of this work.

That being said, to some extent, our approach alleviates
parts of this problem: As our model has to distinguish locally
within the set of provided positive (present in the image)
and negative (not present) templates, it can use them to
semantically ground the notion of a class, effectively defining
the semantic hierarchy. For example, if all templates are
representing different apple varieties, the model is expected
to differentiate between these varieties instead of detecting
any apple.

D.2. Challenges within the DETR framework

Despite its remarkable success and appealing formulation

that removes the need of an explicit object proposal compo-
nent or post-processing step (i.e. NMS), in the context of
few-shot detection some of this advantages pose additional
challenges, some of which we detail bellow. We believe
this aspects could represent potentially interesting future
exploration directions.
Semantic misalignment Traditional object detection sys-
tems, such as [15, 14, 8] preserve an exact feature alignment
between the regressed bounding box and the semantic infor-
mation (i.e. the ROI pooling extracts features at the location
given by the proposal). DETR derived approaches however
construct their representation gradually by adapting a set of
object queries via self-attention and cross-attention with the
encoded features. As each object query operates (attends) to
the entire image, as opposed to the local ROI, the query can
encode information outside of the predicted bounding box.
Thus, we can get to cases where the class may be correct
although the bounding box contains mostly objects of an
incorrect category.

Therefore, when we tried to use an external supervised
classifier, applied to the image region cropped based on the
predicted bounding box, surprisingly we noticed a deteriora-
tion of the performance. Upon visual inspection we observed
a manifestation of the above mentioned phenomena, where
the model was able to predict the correct class despite the fact
that the predicted bounding box contained predominantly
content of a different class, while the external supervised
classifier was unable to.

Reduced proposal diversity A key characteristic of DETR
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Figure 1. FS-DETR pre-training stage. The pre-training process largely mimics the training stage, with a few notable differences: (1) no
annotations are used, (2) the target bounding boxes are proposed by selective search or sampled randomly, (3) the templates are sampled
from the target image itself and (4) only two classes are defined - object and no object.

Figure 2. Novel class 1-shot detection examples with FS-DETR.
First three columns depict success cases, while the right-most col-
umn failures. Green and red boxes indicate novel and base classes,
respectively. Note that in the top-left image two novel classes are
detected simultaneously.

systems is the removal of an a) external object proposal gen-
erator and b) implicit Non Maximum Suppression (NMS).
Upon close inspection of our system we noticed that as we
advance within the transformer based decoder, the bounding
boxes are pruned via self-attention. By the end, despite hav-
ing 100-300 object queries, most will point to a very small
set of distinct regions of the image, lacking the diversity
present in more traditional systems, such as in Fast RCNN.
The consequence of this is a higher likelihood of missing
unseen classes in limited data scenarios, making the pre-
training even more so important to train the built-in object
proposals system.
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Figure 3. Effect of different 1-shot template on detection with FS-DETR. Small images indicate the template used to detect the objects

on the larger images. The left-most two pairs of columns illustrate the robustness to template change, while the right-most column pair
illustrates a failure case.




Figure 4. Attention weights between the visual prompts (templates) and the encoded image features for three randomly sampled target
images (left column) from VOC Pascal dataset. Notice that the network learns to attend to the parts of the image that are semantically close
to the presented templates. For each target image (left column), we show the attention weights generated by four templates. We observe that
for the target image of the first row, only the car template generates attention of high magnitude at several locations corresponding to the
location of the cars in the target image. Similarly, for the target image of the second row only the horse and the person templates fire at the
corresponding locations in the target image as expected. Similar conclusions can be drawn for the target image of the last row.
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