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In this document, we provide additional implementation
details (Section S.1), equations for learnable geometric con-
straints (Section S.2), details on confidence computation
and evaluation (Section S.3), ablation studies evaluating ar-
chitecture contributions (Section S.4), further quantitative
evaluations (Section S.5), and additional qualitative com-
parisons and examples (Section S.6).

S.1. Implementation Details
During training and inference, we set the number of in-

put views for fusion to N = 5 and the number of depth
planes to M = 8 for input depth maps from all methods.
For the DTU [1] dataset, we use the maximum output reso-
lution of each method as the input for V-FUSE. Specifically,
we use 400 × 296 for MVSNet, 1600 × 1184 for UCSNet,
and 1600 × 1152 for NP-CVP-MVSNet and GBi-Net. For
training, we scale the input by a factor of 0.5, with the ex-
ception of MVSNet, for which we train at the full resolu-
tion. For Tanks & Temples [5], we use input resolutions of
1920 × 1056 for UCSNet and 1920 × 1024 for both NP-
CVP-MVSNet and GBi-Net. As the minimum and maxi-
mum allowable search window radii, we use ψmin = 0.005
and ψmax = 0.50. The terms of the loss are weighed by
λd = 0.5, λc = 20.0, and λr = 0.5.

S.2. Hyper-parameters
We define two parameters used in the formulations of the

geometric constraints. For support, we use σp to determine
the sharpness of the support response boundary.

σp = γσ
(Bmax

p −Bmin
p )

M(bmax − bmin)
(1)

Here, γσ is a learned hyper-parameter, Bmin
p and Bmax

p are
the minimum and maximum depth bounds per pixel, M is
the number of depth hypotheses, and bmin and bmax are
the overall minimum and maximum depth bounds that are
given as input for the current reference view. Lower values
of γσ correspond to a tighter support window. Since this is
a function of the per-pixel depth bounds, support adapts to
the confidence at each pixel.

(a) Occlusions (b) Support
Figure S.1. Visualization of the effects of modifying (a), the mul-
tiplier used in the sigmoid and (b), the sigma used in the Gaussian.
The response boundary is the region around the current depth esti-
mate where high response values transition to low response values.
Decreasing the multiplier for occlusions (as well as free-space vi-
olations) (a; top→bottom) causes the sigmoid response boundary
to soften around the current estimated depth. Increasing the sigma
for support (b; top→bottom) causes the support response bound-
ary to soften around the current estimated depth.

Method AUC↓
DTU Tanks & Temples

MVSNet [9] 6.12 -
MVSNet + V-FUSE 4.08 -
UCSNet [2] 20.29 0.394
UCSNet + V-FUSE 4.96 0.208
NP-CVP-MVSNet [8] 8.28 0.212
NP-CVP-MVSNet + V-FUSE 4.35 0.154
GBi-Net [6] 3.69 0.464
GBi-Net + V-FUSE 2.48 0.448

Table S.1. Quantitative comparison of the average AUC (lower is
better) between V-FUSE and each baseline method on the DTU
[1] evaluation set and the Tanks & Temples [5] training set.

For occlusions and free-space violations, we use λp to
determine the sharpness of the sigmoid response boundary.

λp = γλ
M(bmax − bmin)

(Bmax
p −Bmin

p )
(2)

Here, γλ is a learned hyper-parameter. Lower values of γλ
correspond to a softer sigmoid response boundary. Occlu-
sions and free-space violations also adapt to the confidence
at each pixel. See Figure S.1 for a visualization of the re-
sponse boundary.



(c) Image (d) Input Confidence (c) Fused Confidence
Figure S.2. Comparison between the input confidence maps with
the fused confidence maps on scenes from the DTU [1] bench-
mark using GBi-Net [6] (top), and UCSNet [2] (bottom) as input.
(Darker pixel value corresponds to lower confidence.)

Method DTU
MAE↓

GBi-Net [6] 5.845
+ V-FUSE [brute-force] 5.344
+ V-FUSE [sup] 4.813
+ V-FUSE [fsv+occ] 4.477
+ V-FUSE 4.196

Table S.2. Ablation study evaluating the contribution from differ-
ent aspects of the network architecture. [brute-force] indicates the
network is trained using the entire search space (using 128 depth
planes) without the SWE sub-network. [sup] and [fsv+occ] indi-
cate that the network only utilizes the support channel, or only uti-
lizes the free-space violation and occlusion channels, respectively.

S.3. Confidence Estimates

To evaluate the quality of confidence estimates, we re-
port the area under the curve (AUC). The AUC is the area
under the ROC curve, which maps the error rate for the
depth map as a function of density based on the sorted confi-
dence values [4]. We first sort the estimated depths accord-
ing to confidence, and form the sparsification curve of MAE
vs. depth map density by progressively dropping the least
confident depths [4] to obtain depth maps of lower density,
and presumably lower error. Small area under the sparsi-
fication curve indicates that confidence has been estimated
well and can be used to rank depth estimates accurately.

The fused confidence maps are directly computed from
the estimated search window radius. After we normalize the
per-pixel window radii from 0 to 1, the confidence value at
each pixel is Cf

p = 1 − Rp. Intuitively, a larger estimated
radius for a given pixel should indicate lower confidence in
the final depth estimate. This relationship is also reflected
and enforced in our loss function. To compare the quality
of the confidence maps, we report the AUC for all meth-
ods in Table S.1. The output confidence values after fusion
prove to be more reliable estimates of confidence. Qualita-
tive confidence map results can be seen in Figure S.2.

Method V-FUSE [brute-force] V-FUSE [swe]
Memory(GB) 37.734 4.439
Parameters 289,587 297,429
Inference Time(s) 22.95 2.51

Table S.3. Ablation study between the brute-force approach and
the SWE sub-network. We use 192 depth planes for the brute-
force approach, with every pixel having the same depth bounds
given as input by the dataset. For the SWE sub-network, we use
8 depth planes with each depth bound estimated per-pixel. We
can observe significant memory and run-time improvements, with
minimal additional model parameters.

Method DTU
AUC↓

V-FUSE [pv] 7.66
V-FUSE [pv+swe] 6.06
V-FUSE [swe] 2.48

Table S.4. Ablation study on the confidence map computation. We
evaluate using only the output probability volume, as well as the
incorporated and stand-alone radius outputs from the SWE sub-
network (pv: probability volume; swe: search window estimate).

S.4. Ablation Studies

We provide ablation studies evaluating the contributions
of several aspects of the network architecture. In Table S.2,
we evaluate the MAE isolating the SWE sub-network, as
well as the different constraints. We show the contributions
of using the brute-force search space approach, as well as
the contributions of using only support and only occlusions
and free-space violations. In Table S.3, we show the mem-
ory, run-time, and parameter difference between the brute-
force approach and the SWE sub-network.

Most state-of-the-art Deep MVS architectures directly
compute confidence estimates from the output probability
volume of the network, using a small window around the
estimated depth voxel. We explore using this method, incor-
porating the radius estimate from the SWE sub-network, as
well as using only the radius to compute confidence. Specif-
ically, following previous work in Deep MVS, we compute
confidence maps from the output probability volume of the
network by summing the probability values for the four sur-

Method Tanks & Temples
Precision ↑ Recall ↑ F-Score ↑

UCSNet [2]
+ Gipuma [3] 46.66 70.34 54.83
UCSNet + V-FUSE 47.08 68.64 55.03
GBi-Net [6]
+ Gipuma [3] 54.49 71.25 61.42
+ V-FUSE 50.16 73.08 59.08

Table S.5. Precision, Recall, and F-Score on the intermediate set
of Tanks & Temples [5].



Method BlendedMVS [MAE↓]
Mean scan106 scan107 scan108 scan109 scan110 scan111 scan112

GBi-Net [6] 0.319 1.661 0.006 0.027 0.017 0.025 0.031 0.462
+ V-FUSE 0.288 1.539 0.001 0.015 0.011 0.010 0.024 0.417

Table S.6. Quantitative comparison of the 2D depth map errors on the validation set of BlendedMVS [10] benchmark. The best results are
marked in bold. Without any fine-tuning, V-FUSE improves the inputs of GBi-Net [6] on all scenes in the validation set.

(a) Image (b) NP-CVP-MVSNet Depth [8] (c) V-FUSE Depth (d) NP-CVP-MVSNet Error [8] (e) V-FUSE Error
Figure S.3. Qualitative comparison on the DTU [1] dataset between NP-CVP-MVSNet [8] and V-FUSE. We compare the input and fused
depth and error maps. Error maps are colored using a heat map (larger errors correspond to brighter colors).

(c) Image (d) Input Depth (c) Fused Depth
Figure S.4. Qualitative examples comparing the input depth maps
with the fused output depth maps from the BlendedMVS [10]
dataset using GBi-Net [6] as input.

rounding voxels corresponding to the index of the selected
depth. We then test adding the inverse of the radius value
from the SWE sub-network as a weighting to this confi-

dence. Finally, we test using only the inverse radius value to
compute our confidence. We evaluate these different meth-
ods of producing confidence maps in Table S.4. In all in-
stances, the confidence maps produced by V-FUSE are bet-
ter indications of depth estimate quality, and can be used to
more effectively rank depth estimates.

S.5. Additional Quantitative Evaluations
We provide additional results on the BlendedMVS [10]

dataset. We report the MAE on the validation set between
the GBi-Net [6] input depth maps and the V-FUSE output
fused depth maps. We used the pre-trained GBi-Net model
trained on the BlendedMVS training set and tested V-FUSE
using the model trained on DTU without any fine-tuning.
The quantitative results are presented in Table S.6. We show
significant improvements in all scenes. Qualitative results
can be viewed in Figure S.4.

We also provide the Precision and Recall, alongside the



(a) NeuralFusion [7] (b) V-FUSE (c) NeuralFusion [7] (d) V-FUSE
Figure S.5. Qualitative examples comparing the reconstruction results of NeuralFusion [7] and V-FUSE on scenes from Tanks & Temples
[5]. The visuals of the 3D models produced by NeuralFusion [7] are sampled from the paper.

F-Score on the Tanks & Temples [5] intermediate test set,
retrieved from the benchmark leaderboard. The Precision
score is the percentage of points in the reconstructed point
cloud that have a Chamfer distance to the closest point in
the ground-truth point cloud below some threshold, τ . The
Recall score is the percentage of points in the ground truth-
point cloud that have a Chamfer distance to the closest point
in the reconstructed point cloud below the same threshold,
τ . The F-Score is then the harmonic mean of these two
scores. Quantitative results can be found in Table S.5. We
improve the Precision and F-Score using UCSNet as input,
and improve the Recall using GBi-Net as input.

S.6. Additional Qualitative Results

We show additional qualitative results for all baselines.
Figure S.3 shows a comparison of depth and error maps be-
tween NP-CVP-MVSNet [8] and V-FUSE on several scenes
from the DTU [1] evaluation set. In Figure S.5, we provide
a comparison between the final 3D reconstruction results
of NeuralFusion [7] and V-FUSE. We only provide a qual-
itative comparison, as NeuralFusion does not provide any
quantitative results on any of the datasets used in our ex-
periments. Figure S.6 shows a comparison of depth and
confidence maps between GBi-Net [6] and V-FUSE on sev-
eral scenes from the DTU evaluation set. In Figure S.7,
we can observe the depth maps comparison of scenes from
the Tanks & Temples [5] dataset between GBi-Net [6] and
V-FUSE. We provide depth map comparisons from several
scenes of the validation set from BlendedMVS [10] using
GBi-Net [6] as input in Figure S.8. We also show final re-
constructions from the DTU and Tanks & Temples datasets
in Figure S.9 and Figure S.10, respectively.
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(a) Image (b) GBi-Net Depth [6] (c) V-FUSE Depth (d) GBi-Net Confidence [6] (e) V-FUSE Confidence
Figure S.6. Qualitative comparison on the DTU [1] dataset between GBi-Net [6] and V-FUSE. We compare the input and fused depth
and confidence maps. The improvements in surface boundary definition in the fused depth maps are also present in the fused confidence
maps. We can observe much more detailed confidence maps, with more continuous changes in confidence values as opposed to very abrupt
changes in the input confidence maps.

(a) Image (b) GBi-Net [6] Depth (c) V-FUSE Depth
Figure S.7. Qualitative depth map comparison on the Tanks & Temples [5] dataset between GBi-Net [6] and V-FUSE.



(c) Image (d) GBi-Net [6] Depth (c) V-FUSE Depth
Figure S.8. Qualitative examples comparing the input depth maps with the fused output depth maps from the BlendedMVS [10] dataset
using GBi-Net [6] as input.



Figure S.9. Output point clouds of V-FUSE from the DTU [1] dataset using NP-CVP-MVSNet [8] as input.



Figure S.10. Output point clouds of V-FUSE on the intermediate set from the Tanks & Temples [5] dataset using UCSNet [2] as input.


