
A. MegaMedical

Preprocessing. Medical images involve large variations of voxel or pixel values. For example, MRI intensities in MegaMedical
range from [0, 800], CT intensities range from [-2000, 2000], while other modalities might already be in the [0, 1] range.

To normalize data across the diverse datasets, we apply several preprocessing steps for each modality. For MRI datasets,
we clip the intensity to [0.5, 99.5] percentiles for non-zero voxels. For CT images, we clip intensity values to the range
[−500, 1000]. We min-max normalize all resulting volumes to [0, 1] and resize them to 128 × 128 × 128. From any 3D
volumes, we extract two different kinds of slices: mid-slices and max-slices.

Slicing. For mid-slices, from any 3D image and label volumes we extract the middle slice along each axis, resulting in a
representative 128× 128 slice. This strategy avoids biasing the data toward knowing the location of labels in the scans. This is
especially important for inference, where the location of the foreground label would not be known in a 3D volume.

For training, we also extract max slices. For each label l of a dataset, we find the slice (along each axis) in each volume that
contains the most voxels with that label. We extract this slice from both volume and label map and repeat this for all labels in
the dataset. These slices provide additional training data, and we do not use them during evaluation.

Label Maps. Most datasets include label maps that were either manually obtained, or manually curated after being obtained
using an automatic tool. For adult brain datasets [28, 70, 71], we follow recent large-scale analyses [7, 38] and obtain semantic
sub-cortical segmentations using FreeSurfer [26].

Datasets can often contain multiple tasks – such as segmenting both lesions and anatomy – and the same task can appear in
different datasets – like segmenting the hippocampus in different MRI collections. Certain labels can sometimes tackle the
same anatomical region of interest but be defined differently in two different datasets. In this work, we focus on single-label,
single-modality, and 2D segmentation.

Medical Task Creation. To create a task, the subjects of dataset d can contain labels for either a particular biomedical
target (e.g. eye-vessels [99], vertebrae [114], white blood cells [115]) or a set of targets (e.g. abdominal organs [49], brain
regions [70]), and an imaging modality m ∈Md (e.g. CT, MRI, X-Ray). If d is multi-class, we split it into several single-label
l ∈ Ld tasks. If d is a 3D dataset, we extract different axes a ∈ Ad as different tasks. Following this construction, each task
can be described using a unique tuple t = (d,m, l, a).



Table 3: We assembled the following set of datasets to train UniverSeg. For the relative size of datasets, we have included the
number of unique scans (subject and modality pairs) that each dataset has.

Dataset Name Description # of Scans Image Modalities
AbdomenCT-1K [68] Abdominal organ segmentation (overlap

with KiTS, MSD)
1000 CT

ACDC [10] Left and right ventricular endocardium 99 cine-MRI
AMOS [43] Abdominal organ segmentation 240 CT, MRI
BBBC003 [65] Mouse embryos 15 Microscopy
BrainDevelopment [29, 30, 56, 92] Adult and Neonatal Brain Atlases 53 multi-modal MRI
BRATS [5, 6, 73] Brain tumors 6,096 multi-modal MRI
BTCV [58] Abdominal Organs 30 CT
BUS [111] Breast tumor 163 Ultrasound
CAMUS [59] Four-chamber and Apical two-chamber

heart
500 Ultrasound

CDemris [47] Human Left Atrial Wall 60 CMR
CHAOS [48, 50] Abdominal organs (liver, kidneys, spleen) 40 CT, T2-weighted MRI
CheXplanation [89] Chest X-Ray observations 170 X-Ray
CoNSeP [31] Histopathology Nuclei 27 Microscopy
DRIVE [99] Blood vessels in retinal images 20 Optical camera
EOphtha [19] Eye Microaneurysms and Diabetic

Retinopathy
102 Optical camera

FeTA [83] Fetal brain structures 80 Fetal MRI
FetoPlac [9] Placenta vessel 6 Fetoscopic optical camera
HMC-QU [20, 54] 4-chamber (A4C) and apical 2-chamber

(A2C) left wall
292 Ultrasound

I2CVB [60] Prostate (peripheral zone, central gland) 19 T2-weighted MRI
IDRID [84] Diabetic Retinopathy 54 Optical camera
ISLES [36] Ischemic stroke lesion 180 multi-modal MRI
KiTS [35] Kidney and kidney tumor 210 CT
LGGFlair [15, 72] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [11] Liver Tumor 131 CT
LUNA [93] Lungs 888 CT
MCIC [28] Multi-site Brain regions of Schizophrenic

patients
390 T1-weighted MRI

MSD [96] Large-scale collection of 10 Medical Seg-
mentation Datasets

3,225 CT, multi-modal MRI

NCI-ISBI [13] Prostate 30 T2-weighted MRI
OASIS [38, 70] Brain anatomy 414 T1-weighted MRI
OCTA500 [61] Retinal vascular 500 OCT/OCTA
PanDental [2] Mandible and Teeth 215 X-Ray
PROMISE12 [63] Prostate 37 T2-weighted MRI
PPMI [71, 18] Brain regions of Parkinson patients 1,130 T1-weighted MRI
ROSE [69] Retinal vessel 117 OCT/OCTA
SCD [85] Sunnybrook Cardiac Multi-Dataset Collec-

tion
100 cine-MRI

SegTHOR [57] Thoracic organs (heart, trachea, esophagus) 40 CT
SpineWeb [114] Vertebrae 15 T2-weighted MRI
STARE [40] Blood vessels in retinal images 20 Optical camera
TUCC [1] Thyroid nodules 167 Ultrasound cine-clip
WBC [115] White blood cell and nucleus 400 Microscopy
WMH [55] White matter hyper-intensities 60 multi-modal MRI
WORD [67] Organ segmentation 120 CT



B. Additional Implementation Details
Data Storage. For each gradient step, a UniverSeg model needs to load B × (N + 1)× 2 images, where B is the batch

size, N is the support size, and the factor of 2 corresponds to the combination of the image and label map. This can pose
a serious challenge for traditional data loading strategies, especially as N increases. Therefore, we store data samples in a
highly optimized way to ensure that I/O does not bottleneck the training process, using LMDB data stores that are optimized
for read-only access. Within the database, data is encoded using msgpack and compressed with the LZ4 codec for fast
decompression. We find that this setup exceeds regular file-system random access by over two orders of magnitude.

Task Sampling. To ensure task and data heterogeneity during training, we do not sample all tasks equally. Some datasets
contain substantially more tasks than others, and we aim to avoid overfitting medical domains where tasks are abundant (such
as neuroimaging tasks). Instead, we perform hierarchical uniform sampling with multiple stages: dataset, subject group,
acquisition modality, axis, and label. We first sample the dataset uniformly from all datasets, then sample a task among the
tasks from that dataset, and so on.

Model. We implemented UniverSeg in PyTorch [82] and used the official implementations for the baselines (ALPNet,
PANet, and SENet) and supervised network nnUNet. Based on the experimental details in the ALPNet work, we used an
off-the-shelf ResNet101 [34] for both the pre-trained encoder for ALPNet and PANet. For these two methods, because their
feature encoder expects three-channel inputs, we duplicate the input dimension 1× 128× 128 three times channel-wise to get
inputs of dimension 3× 128× 128.

We efficiently perform the CrossConvolution operation by exploiting the batch dimension. Instead of performing N
convolutions with the same learnable parameters, we perform a single convolution by tiling the inputs along the batch
dimension. We use the same strategy for the convolutions predicting the CrossBlock outputs V ′.

Optimization. For all models during training, we minimize the soft Dice loss:

LDice(yt, ŷ) = 1− 2
∑

yt ⊙ ŷ∑
y2t +

∑
ŷ2

, (4)

using a learning rate of η = 10−4, the Adam optimizer[53], and a batch size of 1. We searched learning rates over the range
[10−5, 10−2] and found the best results on the validation split of the training datasets with learning rates around 10−4 and set
on 10−4 for comparison and reproducibility purposes.

Evaluation. We evaluate predicted label maps ŷ using the Dice score [21], which quantifies the overlap between two
regions and is widely used in the segmentation literature:

Dice(yt, ŷ) = 100 ∗ 2|yt ∩ ŷ|
|yt|2 + |ŷ|2

(5)

where y is the ground truth segmentation map and ŷ is the predicted segmentation map. A Dice score of 100 indicates perfectly
overlapping regions, while 0 indicates no overlap.

Task-Specific Networks The nnUNet framework trains 5 networks per task using multiple folds of the support data for
training, and ensemble their predictions at inference. We apply the nnUNet framework independently for each held-out task,
which corresponds to a set of subjects and the segmentation labels for a particular binary task.

We also designed and trained additional individual U-Net networks. For the majority of the tasks, we found the best
results after searching batch sizes and augmentation policies. We omitted these as we found that the nnUNets performed very
similarly.



C. Data Augmentation
During UniverSeg training, we found that using substantial data augmentation was important. Augmentation techniques

enable UniverSeg to see effectively both a greater diversity of tasks as well as a greater number of examples of each. We
separate these two kinds of augmentations into Task and In-Task.

In Table 4, we detail included augmentations. During model development, we experimented to find the hyperparameters
which worked best for each kind of augmentation. Several augmentations are repeated (although with different parameters)
across task and in-task sections of Table 4.

Table 4: List of augmentations used in model training.

Augmentation Aug Type Parameter Details
Flip Intensities Task p = 0.50
Flip Labels Task p = 0.50
Horizontal/Vertical Flip Task p = 0.50
Sobel-Edge Label Task p = 0.50
Task Affine Shift Task p = 0.50 degrees = [0, 360] translate = [0, 0.2] scale = [0.8, 1.1]
Task Brightness Contrast Change Task p = 0.50 brightness = [−0.1, 0.1] contrast = [0.8, 1.2]
Task Elastic Warp Task p = 0.25 α = [1, 2] σ = [6, 8]
Task Gaussian Blur Task p = 0.50 k-size = 5 σ = [0.1, 1.1]
Task Gaussian Noise Task p = 0.50 µ = [0, 0.05] σ2 = [0, 0.05]
Task Sharpness Change Task p = 0.50 sharpness = 5
Example Affine Shift In-Task p = 0.50 degrees = [0, 360] translate = [0, 0.2] scale = [0.8, 1.1]
Example Brightness Contrast Change In-Task p = 0.25 brightness = [−0.1, 0.1] contrast = [0.5, 1.5]
Example Gaussian Blur In-Task p = 0.25 k-size = 5 σ = [0.1, 1.1]
Example Gaussian Noise In-Task p = 0.25 µ = [0, 0.05] σ2 = [0, 0.05]
Example Sharpness Change In-Task p = 0.25 sharpness = 5
Example Variable Elastic Warp In-Task p = 0.80 α = [1, 2.5] σ = [7, 8]

We briefly describe each augmentation and its parameters. Each augmentation also has a parameter p which controls the
probability that augmentation is applied at each iteration. For in-task augmentation, this probability controls whether or not
all of the support set entries are individually augmented or not. For operations that we developed, we include examples in
Figure 10.

• Flip Intensities (Task): Flip the intensity values for all images (query and support), but not the label maps, using 1 - image
for each.

• Flip Labels (Task): Reverse the foreground and background in the segmentation maps.

• Horizontal/Vertical Flip (Task): Flip all entries in the support horizontally or vertically (all flipped in the same way).

• Sobel-Edge Label (Task): We propose an operation that increases the number of tasks with thin segmentation structures.
We apply a Sobel filter to each label map in the x and y directions, compute the squared norm, which becomes our new
label map.

• Affine Shift (Task, In-Task): Apply a consistent random affine transformation to all entries in the support set; degrees
controls how much to randomly rotate, translate controls how far the images and labels can shift, and scale controls the
amount of zoom.

• Brightness Contrast Change (Task, In-Task): Apply a random brightness and contrast change to all images; how much
brightness can change is controlled by brightness and contrast is controlled by the parameter contrast.

• Elastic Warp (Task, In-Task): Apply a consistent elastic deformation warp to all entries in the support and to the query; α
controls the strength of the warp and σ controls the smoothness of the warp.

• Gaussian Blur (Task, In-Task): Apply a convolutional Gaussian blur to each image in the support set and the query with a
certain kernel size, k-size, and standard-deviation σ.



Figure 10: Example augmentation operations applied to the WBC Dataset. We visualize several examples of unique task
augmentations we apply during training.

• Gaussian Noise (Task, In-Task): Apply Gaussian noise to all images in the support set and query with mean µ and
variance σ2.

• Sharpness Change (Task, In-Task): Apply a sharpness filter to the images (query and support), where the sharpness
strength is controlled by sharpness.



D. Synthetic Tasks
We found improvement in held-out performance by introducing synthetic tasks during training, building on recent methods

that use synthetic medical images to solve specific tasks [12, 37, 39], especially the synthetic shapes in SynthMorph [37]. We
generate 1,000 new tasks with high diversity (Figure 12). As shown in Figure 11, for each task, we first synthesize a label map
of 16 random shapes, representing 16 regions of interest. We deform this label map with 100 random smooth deformation
fields, representing 100 subjects with the same simulated anatomy. We then add texture to the resulting images by filling in
each region of interest with slightly varied intensities around a sampled mean and adding Gaussian and Perlin noise.

Step 1: Generate Shape 
Image

Step 3: Fill Each Shape with 
Unique GMM

Step 2: Generate 100 shape 
images by warping original

Figure 11: Generation process for synthetic tasks. For a new synthetic task, we first generate random shapes to obtain a
label map, then synthesize 100 spatial variations on this label map, and finally synthesize resulting intensity images. We repeat
this process for 1000 tasks.

Figure 12: Examples of Synthetically Generated Tasks. We visualize 10 of the 1000 synthetically generated tasks, involving
varying shapes, textures, and label shapes.



E. Extended Results
E.1. Main Results

We include detailed numbers corresponding to figures in the main body of the paper.

• Method Comparison. Table 5 reports test performance numbers of the results from Figure 1 and Table 1, comparing the
segmentation results of UniverSeg to the FS baselines and the supervised nnUNet upper bounds.

• Training Strategies Ablation. Table 6 reports per-dataset test performance numbers for the results of Table 2 comparing
several ways of augmenting the task diversity artificially. While the overall trend holds for most datasets, we find that the
increase in task diversity has a detrimental effect on the STARE eye vessel segmentation task.

• Model Support Size. Table 7 reports held-out test performance numbers of the results from Figure 7 along with
per-dataset breakdowns. We find that the global trend holds for each individual dataset, with larger support sizes achieving
better results and ensembling (with K = 10) consistently improving predictions.

• Available Data for Inference Ablation. Table 8 reports extended results from Figure 8 with per-task results as we
change the size of the support example pool. All tasks showcase the same trend with consistent improvements as more
support examples are used during inference and with a reduced variance across random subsets of the support split.

• Support Set Ensembling. Table 9 reports results for the support set ensembling experiment. We observe a clear
difference between N = 1 and N > 1 for ensembled predictions. For N = 1 ensembling leads to small improvements
that eventually decline as K grows. In contrast for N > 1, ensembling leads to substantial improvements that also reduce
the variance of the distribution, limiting the dependence on the specific subset used for the support set.

• Number of Tasks Ablation. Table 10 reports the per-dataset and global dice numbers for the models trained with a
subset of the training datasets.

• Effect of Support Size on Training and Inference Costs. Table 11 reports per-iteration costs for training and inference
as we vary the number of examples in the support set. Figure 13 illustrates the inference trend, where we see that for
N > 4, inference latency and peak memory requirements scale linearly as we increase the support set size.

Table 5: Method Comparison. Test Dice Score for the baselines, UniverSeg, and the nnUNet upper bounds in each of the
held-out datasets. Standard deviation is computed by bootstrapping subjects before hierarchically averaging the data.

Model ACDC PanDental SCD STARE SpineWeb WBC All (avg.)
ALPNet 34.6 ± 2.4 72.9 ± 0.8 53.4 ± 3.0 17.8 ± 1.9 31.6 ± 4.6 76.2 ± 1.1 47.8 ± 1.1
PANet 27.8 ± 4.3 67.7 ± 0.8 58.9 ± 3.4 20.1 ± 3.2 21.8 ± 0.4 54.7 ± 1.6 41.8 ± 1.3
SENet 40.1 ± 2.0 81.1 ± 0.9 55.4 ± 3.3 35.2 ± 2.2 18.3 ± 4.0 70.8 ± 1.3 50.1 ± 1.3
UniverSeg (ours) 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1 71.8 ± 0.9

nnUNet (sup.) 82.5 ± 2.3 92.9 ± 1.1 75.0 ± 3.4 65.5 ± 1.1 91.2 ± 2.3 95.1 ± 0.7 84.4 ± 1.0



Table 6: Training Stategies Ablation. Per dataset held-out Dice for UniverSeg models trained with different combinations of
the proposed techniques to increase task diversity: in-task augmentation, task augmentation, and synthetic tasks.

Synth Medical In-Task Task ACDC PanDental SCD STARE SpineWeb WBC

✓ 55.4 ± 3.4 80.6 ± 1.3 55.7 ± 2.4 42.6 ± 2.5 50.1 ± 6.5 86.0 ± 1.4
✓ 44.9 ± 1.8 85.3 ± 0.9 59.9 ± 1.9 63.8 ± 0.9 40.3 ± 6.0 82.0 ± 1.6

✓ ✓ 50.6 ± 2.9 85.7 ± 0.9 59.0 ± 1.9 61.9 ± 1.6 45.6 ± 4.8 84.2 ± 1.4
✓ ✓ 52.3 ± 4.3 86.5 ± 0.9 64.9 ± 2.7 56.0 ± 2.3 57.2 ± 3.7 85.1 ± 1.4
✓ ✓ 68.0 ± 3.0 87.5 ± 1.0 63.5 ± 2.3 56.6 ± 2.1 57.8 ± 6.6 89.2 ± 1.3
✓ ✓ ✓ 70.0 ± 2.8 88.0 ± 0.9 71.2 ± 3.1 42.2 ± 2.1 58.4 ± 8.5 90.3 ± 1.2

✓ ✓ ✓ ✓ 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1

Table 7: Model Support Size. Comparison of predictions for models trained with various of support sizes N and evaluated
with and without ensembling K = 10 predictions. We report results on each held-out dataset as well as the global average.
Standard deviation is computed by bootstrapping subjects before hierarchically averaging the data. For all datasets, we find
that increasing the support size leads to better predictions, with diminishing returns after N > 16. Ensembling predictions
significantly improve performance in the majority of settings (paired t-test).

N K ACDC PanDental SCD STARE SpineWeb WBC All (avg.)

1
1 41.3 ± 1.3 76.3 ± 0.9 60.2 ± 1.8 37.4 ± 3.8 30.4 ± 5.5 74.0 ± 1.2 53.3 ± 1.0

10 44.5 ± 2.4 79.1 ± 1.0 60.0 ± 1.9 38.5 ± 4.0 32.4 ± 6.6 79.4 ± 1.4 55.7 ± 1.1

2
1 41.3 ± 2.6 80.0 ± 1.0 63.5 ± 2.0 40.4 ± 2.1 38.0 ± 4.3 77.6 ± 1.1 56.8 ± 1.0

10 42.8 ± 3.2 82.4 ± 1.1 68.0 ± 2.5 40.7 ± 2.3 43.4 ± 4.1 82.3 ± 1.4 60.0 ± 1.2

4
1 53.9 ± 1.9 83.9 ± 1.0 64.7 ± 1.7 47.9 ± 2.9 45.5 ± 4.0 82.7 ± 1.4 63.1 ± 0.8

10 57.0 ± 2.6 84.6 ± 1.1 66.4 ± 2.8 48.6 ± 2.9 50.8 ± 4.1 85.7 ± 1.5 65.5 ± 0.8

8
1 57.0 ± 2.5 85.0 ± 0.9 66.9 ± 3.2 45.9 ± 3.5 57.3 ± 6.5 83.7 ± 1.5 66.0 ± 1.3

10 61.6 ± 3.3 86.1 ± 0.9 69.0 ± 4.1 47.1 ± 3.5 62.3 ± 6.0 85.9 ± 1.5 68.6 ± 1.3

16
1 64.1 ± 2.4 86.1 ± 0.9 69.1 ± 3.1 48.8 ± 3.0 64.4 ± 5.8 86.9 ± 1.4 69.9 ± 1.0

10 66.8 ± 2.5 86.7 ± 0.9 68.7 ± 3.5 49.7 ± 2.8 66.8 ± 5.7 88.3 ± 1.5 71.2 ± 1.0

32
1 65.6 ± 3.0 87.1 ± 0.9 69.0 ± 2.0 45.7 ± 2.2 65.8 ± 4.6 87.6 ± 1.3 70.1 ± 0.9

10 69.3 ± 2.9 87.6 ± 0.9 69.5 ± 1.9 46.4 ± 2.1 66.4 ± 4.3 88.9 ± 1.4 71.4 ± 0.8

64
1 69.0 ± 2.9 87.2 ± 0.9 68.7 ± 2.9 47.2 ± 2.2 64.2 ± 5.5 89.7 ± 1.1 71.0 ± 1.0

10 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1 71.8 ± 0.9



Table 8: Limited Example Data. UniverSeg predictions using a limited dsupport example pool for each held-out task. For each
size, we perform 100 repetitions using different random subsets, reporting the mean and standard deviation across them. Since
some tasks do not have enough subjects to be evaluated for all values of N , we report min(N, |dsupport|) and omit repeated
settings where N > |dsupport|.

Task N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

ACDC 22.9 ± 5.5 38.5 ± 6.9 51.4 ± 4.7 59.1 ± 3.0 64.4 ± 2.2 68.6 ± 1.4 71.0 ± 0.0
PanDental0 59.1 ± 7.4 73.3 ± 4.2 77.6 ± 1.6 80.1 ± 0.8 82.1 ± 0.5 83.2 ± 0.3 83.7 ± 0.1
PanDental1 65.5 ± 3.9 84.1 ± 2.2 87.5 ± 2.7 89.5 ± 1.2 90.6 ± 0.5 91.1 ± 0.3 91.3 ± 0.0
SCD0 34.3 ± 9.2 63.1 ± 5.1 70.8 ± 2.5 73.1 ± 1.2 74.3 ± 0.4 74.2 ± 0.0
SCD1 33.0 ± 10.4 61.8 ± 9.4 72.8 ± 5.0 76.7 ± 2.4 78.5 ± 0.8 78.6 ± 0.0
SCD2 45.0 ± 11.4 71.5 ± 12.7 80.6 ± 7.2 84.8 ± 0.0
SCD3 30.5 ± 9.3 47.1 ± 6.5 54.9 ± 4.5 63.0 ± 2.3 64.2 ± 0.0
SCD4 9.2 ± 4.4 13.3 ± 8.3 25.9 ± 7.8 39.0 ± 3.1 41.0 ± 0.0
STARE 25.5 ± 3.5 33.5 ± 2.0 40.2 ± 1.2 45.2 ± 0.5 47.7 ± 0.0
SpineWeb 28.1 ± 2.1 39.3 ± 6.1 52.1 ± 7.0 63.1 ± 3.3 64.7 ± 0.0
WBC0 49.4 ± 4.5 65.0 ± 4.3 74.8 ± 3.0 81.0 ± 1.9 85.0 ± 1.2 87.5 ± 0.8 88.8 ± 0.0
WBC1 57.4 ± 4.8 75.2 ± 3.5 83.0 ± 2.1 87.4 ± 1.0 89.9 ± 0.4 91.3 ± 0.3 91.9 ± 0.2

Table 9: Ensembling predictions at different inference support sizes. For each inference support size N , we report the
results (in average held-out Dice Score) of taking 100 predictions (K = 1) and ensembling by averaging in groups of size K,
performing 100 repetitions for each K. We report the mean and standard deviation across the 100 values for each setting and
find that increasing either K or N leads to improved model performance, with N having a significantly larger effect than K.

N K = 1 K = 2 K = 4 K = 8 K = 16 K = 32 K = 64
1 36.9 ± 2.0 39.4 ± 2.3 40.7 ± 2.0 40.9 ± 1.6 40.3 ± 1.1 39.4 ± 0.7 38.3 ± 0.4
2 51.0 ± 3.2 56.3 ± 2.2 59.5 ± 1.6 61.0 ± 1.2 61.9 ± 0.9 62.3 ± 0.6 62.4 ± 0.3
4 59.4 ± 2.3 63.7 ± 1.5 66.2 ± 1.0 67.5 ± 0.7 68.2 ± 0.4 68.6 ± 0.3 68.8 ± 0.2
8 64.8 ± 1.9 68.0 ± 1.1 69.6 ± 0.6 70.5 ± 0.4 71.1 ± 0.2 71.3 ± 0.2 71.4 ± 0.1

16 68.4 ± 1.1 70.1 ± 0.5 71.0 ± 0.4 71.5 ± 0.3 71.8 ± 0.2 71.9 ± 0.1 72.0 ± 0.1
32 70.1 ± 0.6 71.0 ± 0.3 71.5 ± 0.2 71.7 ± 0.1 71.8 ± 0.1 71.9 ± 0.1 71.9 ± 0.0
64 71.0 ± 0.3 71.4 ± 0.2 71.6 ± 0.2 71.7 ± 0.1 71.8 ± 0.1 71.8 ± 0.1 71.8 ± 0.0
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Figure 13: Effect of Support Set Size on Inference Computational Cost. UniverSeg inference latency (left) and peak GPU
memory (right) both linearly increase with the support set size. Measurements are performed on an NVIDIA V100 GPU with
a batch size of 1.



Table 10: Number of Training Datasets and Tasks. Test Dice score results for models trained with ND datasets comprising
NT tasks. The subsets of the training datasets are chosen randomly so we report three realizations for each ND, except for the
case where all datasets are included. Each row corresponds to a separate UniverSeg model.

ND NT ACDC PanDental SCD STARE SpineWeb WBC All (avg)

1
25 24.7 ± 2.8 82.2 ± 0.8 43.7 ± 3.3 7.2 ± 2.5 0.2 ± 0.2 61.1 ± 1.3 36.5 ± 0.8
29 3.3 ± 2.4 18.4 ± 0.7 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 0.4

156 63.1 ± 2.7 80.0 ± 1.8 53.5 ± 5.3 17.5 ± 2.3 46.2 ± 1.6 86.2 ± 1.3 57.8 ± 1.1

2
33 41.7 ± 3.7 83.8 ± 1.0 43.9 ± 2.3 16.9 ± 1.4 22.2 ± 3.3 80.0 ± 1.5 48.1 ± 1.1
85 49.5 ± 3.5 83.1 ± 1.1 59.9 ± 2.5 22.9 ± 2.1 52.9 ± 2.1 85.5 ± 1.4 59.0 ± 1.0

131 31.9 ± 2.5 82.0 ± 0.8 42.3 ± 3.4 0.0 ± 0.0 10.2 ± 3.2 69.5 ± 1.3 39.3 ± 0.6

5
237 43.6 ± 5.5 75.3 ± 1.3 52.1 ± 2.8 26.8 ± 3.4 28.3 ± 10.1 86.3 ± 1.2 52.1 ± 2.2
710 63.9 ± 3.6 86.6 ± 1.0 63.5 ± 2.2 27.2 ± 3.3 61.1 ± 5.0 87.4 ± 1.6 64.9 ± 1.3

1117 67.4 ± 3.1 86.5 ± 1.0 62.9 ± 4.5 51.6 ± 2.4 58.4 ± 8.2 89.9 ± 1.0 69.4 ± 2.0

11
174 51.2 ± 2.8 84.0 ± 0.9 66.5 ± 2.7 22.8 ± 1.3 52.2 ± 0.4 84.5 ± 1.1 60.2 ± 0.8

1223 60.6 ± 3.6 86.8 ± 1.0 59.0 ± 4.9 29.7 ± 2.4 58.4 ± 5.6 85.5 ± 1.3 63.3 ± 1.7
1457 69.7 ± 2.8 87.5 ± 0.9 65.4 ± 3.3 40.5 ± 3.0 59.6 ± 7.0 88.6 ± 1.1 68.6 ± 1.7

23
1320 66.9 ± 3.5 85.3 ± 0.9 68.1 ± 2.4 31.2 ± 0.7 57.2 ± 5.9 88.4 ± 1.3 66.2 ± 1.1
2157 66.5 ± 3.0 86.1 ± 1.0 64.0 ± 2.3 36.9 ± 1.1 64.9 ± 5.4 89.6 ± 1.3 68.0 ± 1.1
2276 66.5 ± 3.8 86.7 ± 0.9 65.7 ± 2.8 28.1 ± 2.4 52.4 ± 6.6 89.1 ± 1.2 64.8 ± 1.4

34
3008 69.8 ± 3.0 88.8 ± 0.9 68.3 ± 2.6 42.5 ± 3.2 62.4 ± 6.1 90.0 ± 1.2 70.3 ± 1.4
3483 70.7 ± 2.9 87.1 ± 1.0 67.2 ± 3.5 46.7 ± 3.6 63.0 ± 5.0 90.7 ± 1.4 70.9 ± 1.0
3854 65.3 ± 3.6 88.2 ± 1.0 65.1 ± 1.6 43.1 ± 3.1 62.2 ± 5.5 89.0 ± 1.1 68.8 ± 1.0

46 4432 71.3 ± 2.6 87.9 ± 0.9 67.9 ± 2.5 44.9 ± 2.9 65.5 ± 4.7 91.0 ± 1.1 71.4 ± 1.1

Table 11: Effect of Support Size on Training and Inference Costs. We measure the cost of performing a training iteration
(forward, backward pass, and optimizer step), and an inference step (only forward pass) for UniverSeg models with varying
support set size N . We report wall-clock time of each operation and the peak GPU memory required. For small support set
sizes (N ≤ 4), the costs are similar, and beyond that, they increase linearly with N . Measurements are performed on an
NVIDIA V100 GPU with a batch size of 1.

Iteration Time (ms) Peak Memory (MiB)

N Inference Training Inference Training

1 4.6 10.4 149 231
2 4.9 12.8 157 288
4 4.7 13.3 173 477
8 6.8 21.2 275 917

16 11.8 35.9 533 1797
32 23.0 69.7 1047 3555
64 45.7 132.2 2074 7073



E.2. Additional Results

Few-shot Baseline Model Variants. The FS baselines (ALPNet, PANet, and SENet) were introduced in a few-shot setting
where the underlying assumption is that any new task can only have very few examples, rather than our setting where we
avoid re-training due to the limitations of the clinical settings. These baselines were therefore presented with a support size
of 1 example. They also involved no data or task augmentation. Our ablations show that UniverSeg models performed best
with large support set sizes and increased data and task diversity from augmenting examples. Consequently, we test whether
incorporating these changes to the baseline methods leads to improved performance in the held-out datasets in our setting,
where more data might be available for some datasets. Similarly, we also test whether ensembling predictions from several
support sets lead to better predictions, as we do for UniverSeg.

Table 12 and Table 13 report results of the hyperparameter grid search for all the few-shot baseline models and UniverSeg.
Table 12 shows that ensembling (K = 10) and an increased support size (N = 64) leads to held-out improvements for
all methods. In contrast, augmentation strategies do not benefit all methods. While UniverSeg and SENet improve when
using augmentation strategies, PANet and ALPNet experience a decrease in performance. Table 13 shows that the best
hyperparameter setting is not consistent across held-out datasets for the baseline methods.

Table 12: FS baseline hyperparameter search. For each method, we report results for models trained with a support size
N , ensemble size K, and with and without data and task augmentation. Dice scores are averaged across all datasets and the
standard deviation is computed via subject-level bootstrapping.

No Aug Aug

Model N K=1 K=10 K=1 K=10

ALPNet 1 40.2 ± 0.9 42.3 ± 1.3 35.4 ± 0.6 37.0 ± 0.8
64 46.3 ± 1.3 47.8 ± 1.1 42.3 ± 1.0 45.2 ± 1.2

PANet 1 37.4 ± 0.7 39.3 ± 0.8 33.2 ± 1.3 34.3 ± 1.4
64 41.6 ± 1.3 41.8 ± 1.3 38.7 ± 0.9 40.8 ± 0.8

SENet 1 40.0 ± 0.9 41.2 ± 0.9 40.1 ± 1.2 41.1 ± 1.4
64 42.1 ± 0.7 42.4 ± 0.8 50.2 ± 1.1 50.1 ± 1.3

UniverSeg (ours) 1 49.7 ± 0.9 53.4 ± 1.1 51.9 ± 0.8 54.0 ± 1.0
64 64.0 ± 1.1 64.5 ± 1.0 71.0 ± 1.0 71.8 ± 0.9



Table 13: Few-shot baseline hyperparameter search per dataset. For each method, we report results for models trained with
a support size N , ensemble size K = 10, and with and without data and task augmentation. Dice score values are averaged
across all datasets and the standard deviation is computed via subject-level bootstrapping. For each dataset and model, we
highlight the setting with the best performance

Model N Aug ACDC PanDental SCD STARE SpineWeb WBC

ALPNet
1

No 22.1 ± 3.2 66.8 ± 1.0 49.1 ± 3.8 22.7 ± 2.0 29.7 ± 3.7 63.2 ± 0.9
Yes 26.7 ± 2.9 51.8 ± 1.5 41.5 ± 1.9 11.0 ± 2.8 19.7 ± 4.9 71.0 ± 1.6

64
No 34.6 ± 2.4 72.9 ± 0.8 53.4 ± 3.0 17.8 ± 1.9 31.6 ± 4.6 76.2 ± 1.1
Yes 38.3 ± 2.5 71.1 ± 1.0 56.1 ± 1.6 6.3 ± 2.2 25.5 ± 6.4 73.9 ± 1.2

PANet
1

No 33.4 ± 2.5 69.8 ± 1.3 48.7 ± 3.5 17.4 ± 4.3 25.4 ± 3.9 40.9 ± 1.8
Yes 30.3 ± 3.0 63.2 ± 1.3 48.4 ± 3.3 4.6 ± 2.9 28.6 ± 5.6 31.0 ± 2.1

64
No 27.8 ± 4.3 67.7 ± 0.8 58.9 ± 3.4 20.1 ± 3.2 21.8 ± 0.4 54.7 ± 1.6
Yes 29.6 ± 2.3 66.4 ± 1.4 46.8 ± 2.3 15.1 ± 2.1 27.9 ± 5.8 58.8 ± 1.5

SENet
1

No 17.0 ± 2.9 61.7 ± 1.1 47.5 ± 2.3 41.3 ± 2.7 21.7 ± 3.7 58.1 ± 0.9
Yes 32.2 ± 2.8 62.4 ± 1.3 48.2 ± 2.9 31.4 ± 2.1 16.8 ± 7.8 55.5 ± 1.3

64
No 32.0 ± 2.4 79.1 ± 0.8 43.8 ± 2.9 37.5 ± 2.9 3.2 ± 2.4 58.7 ± 1.1
Yes 40.1 ± 2.0 81.1 ± 0.9 55.4 ± 3.3 35.2 ± 2.2 18.3 ± 4.0 70.8 ± 1.3

UniverSeg
1

No 29.1 ± 2.0 76.1 ± 0.9 58.0 ± 2.1 54.5 ± 2.7 31.6 ± 6.4 70.9 ± 1.7
Yes 37.5 ± 2.0 76.8 ± 1.1 62.9 ± 2.6 33.9 ± 3.7 36.0 ± 5.0 76.8 ± 1.6

64
No 50.6 ± 2.9 85.7 ± 0.9 59.0 ± 1.9 61.9 ± 1.6 45.6 ± 4.8 84.2 ± 1.4
Yes 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1



Using different training and inference support sizes. In Figure 14, we report dataset-level results of performing inference
with a support size of M using a UniverSeg model trained with a support size of N examples. We find that using support
sets larger than those seen in training (M > N , lower quadrant of heat-maps) leads to improvements for N ≥ 2, which
demonstrates the model is learning to interact the elements of the support set and benefits from larger amounts of examples.
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Figure 14: Cartesian Product of Training and Inference Support Sizes. Test results for using a UniverSeg trained with
a support size of N examples and performing inference with a support size of M examples. No ensembling is performed
(K = 1), but we perform 10 repetitions with varying support sets and report the average.



Multi-Instance Generalization. In some segmentation tasks, such as WBC, images can contain several instances of a
particular class. Although instance segmentation is beyond the scope of our work, in Figure 15 we visualize the segmentation
of five different examples of WBC cells, which have different numbers of nuclei (blue). For these target images, UniverSeg
was given the same support set, with each support example having only one nucleus. We find that UniverSeg is able to segment
all visible nuclei, suggesting that UniverSeg could be used or adapted to multi-instance segmentation tasks.
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Figure 15: Multi-label UniverSeg predictions for WBC images with one or two instances of nuclei (blue), cytoplasm
(green), and background (black). The support set consists of mono-nucleic cells.



F. Additional Visualizations

Visualization of Held-Out Support Sets. UniverSeg networks take advantage of large support sets of (image, label-map)
pairs, which can be very diverse. In Figure 16, we visualize a random subset of 10 pairs for each held-out dataset. The diversity
of subjects within support sets differs between tasks, which likely plays a role in the number of examples required to perform
well.

Figure 16: Example Support Sets for Held-Out Datasets.



Visualization of Soft Predictions. Thresholding segmentation predictions (at 0.5) provides a binary segmentation and enables
computation of well-known metrics such as the (hard) Dice score. However, for certain regions of interest, like thin structures,
thresholding can hide network performance. In Figure 17, we show this effect visually. For example, focusing on STARE, we
see that UniverSeg networks can capture the thin structures very well, which is lost when thresholding the predictions to create
a binary segmentation.

Figure 17: Visualization of Soft (Non-Thresholded) Predictions for All Methods.



WBC task visualizations. We include some visualizations of UniverSeg’s capability to adapt based on the support set
specification. We use the WBC dataset, which presents substantial variability between support set examples.

• Figure 18 presents support set examples for the WBC Cytoplasm label as well as held-out predictions, showing that
UniverSeg closely matches the ground truth.

• Figure 19 shows how UniverSeg is equivariant with respect to the support set labels. Given the same images as in
Figure 18 but different labels, UniverSeg adapts its predictions to the nucleus label.

• Figure 20 showcases UniverSeg’s invariance to image transformations. Using the same images and label examples from
Figure 18, we invert the image data (i.e. 1− x) for both the query and support set images. UniverSeg correctly segments
the label regardless of the image transformation.

• Figure 21 shows that while UniverSeg is trained on binary segmentation tasks, it can adequately perform multi-label
segmentation. To produce multi-label predictions, we treat each label independently, and then combine the predictions for
each label using a softmax operation.

• Figure 22 shows the effect of the support set size N in the prediction results. We observe that segmentation mask quality
substantially improves as we increase the number of support set image-label pairs.

• Figure 23 shows prediction variability for predictions performed with support size N = 8 along with an ensembled
prediction.



(a) Support Set Examples - Cytoplasm Label
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(b) Predictions - Cytoplasm Label
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Figure 18: Visualization of support set examples (a) and predictions (b) for the WBC Cytoplasm label



(a) Support Set Examples - Nucleus Label
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(b) Predictions - Nucleus Label
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Figure 19: Visualization of support set examples (a) and predictions (b) for the WBC Nucleus label



(a) Support Set Examples - Inverted Images
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(b) Predictions - Inverted Images
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Figure 20: Visualization of support set examples (a) and predictions (b) for the WBC Cytoplasm label with inverted images



(a) Support Set Examples - Multi Label
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(b) Predictions - Multi Label
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Figure 21: Visualization of support set examples (a) and predictions (b) for the WBC task with multiple labels being predicted
independently. Each label is encoded using a RGB channel (Red=backgroud, Green=Cytoplasm, Blue=Nuclues), we only see
some mild nucleus-cytoplasm overlaps in cyan for one example.



(a) Predictions - Example A
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(b) Predictions - Example B
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(c) Predictions - Example C
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Figure 22: Visualization of predictions for the WBC Cytoplasm task with varying number of support set examples N . Larger
support sets lead to better segmentation masks.



(a) Predictions - Example A

Im
ag

e

Support Set 1
Dice: 88.8

Support Set 2
Dice: 83.0

Support Set 3
Dice: 87.1

Support Set 4
Dice: 87.9

Support Set 5
Dice: 86.5

5-Ensemble
Dice: 91.2

Pr
ed

ict
io

n
Gr

ou
nd

 Tr
ut

h

(b) Predictions - Example B
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(c) Predictions - Example C
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Figure 23: Visualization of predictions for the WBC Cytoplasm task with various choices of support set (N = 8) as well as
the ensembled prediction (last column). Ensembling reduces the variance of predictions.


