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This is the supplementary material for our proposed real-time transparent object reconstruction method. In this material, we
will introduce some details about our datasets and show more evaluation results. Besides, we provide a video that shows our
results compared with the previous methods introduced in our paper.

A. Real-time Performance
The implementation of our Pseudo-SLAM system is based on C++ and Libtorch framework. The mask prediction result
is provided individually using [2]. We query the result and send it to our depth prediction module. The average time for
constructing a sequence with 300 frames is 31.1s. Note that the initialization time is about 1.4s. The GPU warm-up at the
early step costs about 9.3s on average. We only start calculating FPS when the running time is stable for each frame. When
stabilizes, the depth prediction module takes 0.0346s and RGB-D reconstruction takes 0.0317s on average per frame. The FPS
of our method is 14.5 on average.

B. Data Creation

(a) Synthetic Scene (b) Synthetic Scene from Camera View (c) RGB-D Camera (d) Transparent and Opaque Objects

Figure 1. Relevant software and tools used to build our dataset.

B.1. Synthetic Data Creation using Blender

We have discussed in our paper that the previous datasets are not suitable for our depth prediction model. Since obtaining
ground truth depth data of transparent objects in real scenes is hard, we use the free software Blender to simulate real scenes
that contain the transparent objects. We use the Python script to render these scenes and set a circle camera trajectory to obtain
a sequence of ground truth depth data, mask, and RGB. We create 15 scenes for training and 5 scenes for validation. Our
training scenes contain glass cups, glass goblets, wine cups, and square transparent boxes. Each scene contains about 400-600
frames. These data do not contain Kinect-like noise but to simulate real-world data captured by the RGB-Dcamera, we add
Gaussian noise and controllable motion blur to depth and RGB data at the training stage. For validation scenes, we do not
include new transparent object models. Instead, we set different placements of the glass cup model to create scenes: ”Glass
Cup” and ”Glass Cup(down)” and different trajectories of the glass goblet model to create scenes: ”Glass Goblet” and ”Glass
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Goblet(part)”. The scene ”Snack Plate” contains multiple opaque boxes and a transparent one. The number of frames that each
validation scene contains is listed in Tab. 1.

B.2. Capture Real Scene Data using RGB-D Camera

We use a hand-hold RealSense D435i RGB-D camera at a frame rate of 30 Hz and 640x480 resolution in the real scene data
capturing. We use Kalibr toolbox [1] and the April tag for camera calibration. The specific calibration information is stored in
the ”camera info” file in our real captured dataset. We select four daily used glass objects: ”Angular Cup”, ”Long-Necked
Cup”, ”Vase”, and ”Cylindric Cup” as our test transparent objects. The transparent and opaque objects used to build our real
scene dataset are shown in Fig. 1 and the number of frames is shown in Tab. 1. Because we capture scenes with hand-holding
camera, the video we get occasionally shakes. We discard these fragments as they will greatly impact the ElasticFusion
reconstruction method.

Synthetic Scene
Glass Cup Glass Cup(down) Goblet Goblet(part) Snack Plate

300 300 450 300 400
Real Scene

Angular Cup Long-Necked Cup Vase Cylindric Cup Cylindric Cup(floor)
515 490 448 320 379

Table 1. Number of frames in different scenes.

Glass Cup
Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.068 0.462 0.368 0.410
TransCG 0.061 0.611 0.443 0.500
Ours 0.010 0.670 0.664 0.667

Glass Cup(down)
Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.094 0.529 0.437 0.479
TransCG 0.083 0.485 0.455 0.470
Ours 0.075 0.421 0.387 0.403

Goblet(part)
Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.038 0.540 0.518 0.517
TransCG 0.026 0.627 0.829 0.765
Ours 0.015 0.847 0.908 0.815

Goblet
Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.043 0.540 0.459 0.600
TransCG 0.029 0.627 0.437 0.580
Ours 0.019 0.402 0.785 0.557

Snack Plate
Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.055 0.731 0.771 0.751
TransCG 0.046 0.771 0.779 0.775
Ours 0.018 0.913 0.863 0.887

Table 2. Detailed reconstruction evaluation result.



C. Transparent Object Reconstruction
Our geometry reconstruction result is formatted as ”surfel” proposed in ElasticFusion, which mainly contains RGB color,
location, surface normal, and radius. We provide a video that displays the process of the surfel reconstruction. This video
contains detailed visualization of geometry results in the triangle mesh.

Besides, we show our reconstruction results of the above scenes in Fig. 5 and Fig. 4 with a higher resolution. We also show the
detailed reconstruction evaluation metrics used in our paper in Tab. 2.

(a) RGB (b) View 1 (c) View 2

Figure 2. Bad cases in our synthetic dataset.

(a) RGB (b) View 1 (c) View 2

Figure 3. Bad cases in our real dataset.

Bad cases analysis. We find that for the ”Goblet” scene, our method fails to predict the consistent depth value on different
views. As shown in Fig. 2, the reconstruction result is not complete. The surface of the transparent object can be reconstructed
only from the displayed view of the image, while from another view, the result is distorted. We argue that the incomplete
reconstruction is due to the accumulated error of camera trajectory prediction. This error is caused by the highlight on the
surface of the transparent object and leads to the unmatching of neighboring images in our model. Besides, in the real captured
scene, the material of the transparent object is different from the one in the synthetic scene. It is hard to simulate the material
of real transparent objects. In the ”Vase” scene shown in Fig. 3, due to the large shape different from the transparent objects in
our dataset, our method can not restore the curved surface of the transparent vase. For future work, to resolve these problems,
we will include more transparent objects with different shapes in our dataset and improve the accuracy of camera trajectory
estimation in high-light scenes.
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(a) RGB (b) View 1 (c) View 2

Figure 4. Reconstruction result in the real scene. (b) and (c) are our reconstruction results in different views. From top to bottom are:
scene ”Angular Cup”, scene ”Long-Necked Cup”, scene ”Vase”, scene ”Cylindric Cup” and scene ”Cylindric Cup(floor)”.



(a) RGB (b) View 1 (c) View 2

Figure 5. Reconstruction result in the synthetic scene. (b) and (c) are our reconstruction results in different views. From top to bottom are
scene ”Glass Cup”, scene ”Glass Cup(down)”, scene ”Goblet(part)”, scene ”Goblet” and scene ”Snack Plate”.
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