
DiffDreamer: Towards Consistent Unsupervised Single-view Scene
Extrapolation with Conditional Diffusion Models

Supplementary Material

A. Additional quantitative results
We supply quantitative ablation comparisons including

DiffDreamer-diverse on LHQ [86] in Tab. 5, and additional
quantitative results of DiffDreamer-diverse on ACID [42] in
Tab. 6. We further report CLIP feature similarity between
frames in Tab. 7, a metric used by several recent video gen-
eration methods, including [106, 98], with different inter-
vals.

20 steps 50 steps 100 steps COLMAP
Method FID # KID # IS " FID # KID # IS " FID # KID # IS "
InfNat-0 39.45 0.12 2.80 36.53 0.11 2.79 26.24 0.12 2.72 612

Auto-regressive 70.53 0.53 1.99 77.81 0.63 1.91 90.69 0.81 2.14 2030
No anchored 38.41 0.17 2.70 46.40 0.24 2.63 58.67 0.40 2.79 1543
No lookahead 68.30 0.46 1.76 75.18 0.74 1.85 92.85 0.81 2.06 2457

DiffDreamer 34.49 0.08 2.82 38.86 0.12 2.90 51.0 0.28 2.99 3124
DiffDreamer-diverse 34.92 0.09 3.19 30.78 0.10 3.27 24.04 0.12 3.26 1403

Table 5: Quantitative ablation studies.

20 steps 50 steps 100 steps COLMAP
Method FID # KID # IS " FID # KID # IS " FID # KID # IS "
InfNat 59.93 0.22 2.36 57.47 0.26 2.28 48.27 0.27 2.28 1476

DiffDreamer 52.81 0.12 2.69 61.04 0.26 2.86 70.11 0.41 2.82 3423
DiffDreamer-diverse 51.28 0.15 2.37 44.44 0.19 2.40 42.97 0.21 2.43 1883

Table 6: Quantitative comparison of DiffDreamer-diverse’s
performance on ACID [42].

CLIP cos. sim. " Pairwise Frame Interval

Method 1 5 10 15 20

InfNat-0 0.98 0.95 0.92 0.90 0.88
DiffDreamer 0.99 0.97 0.96 0.94 0.92

Table 7: CLIP similarity between consecutive frames.

B. Additional qualitative results
Figures 12, 13, 14, and 15 show additional scene ex-

trapolation results from our model with 50 steps of forward
motion. The task of scene extrapolation has a multi-modal
nature: given a single input image, there could be infinite
ways of generation. Therefore, we show multiple rendering
trajectories of over 50 steps for each input image and sup-
porting videos with framerates upsampled using [64] (note
that the videos are rendered at 128⇥128 and may appear
blurry under higher resolution). To encourage diversity
and prevent hitting mountains/the ground while generating
longer sequences, we can additionally condition the diffu-
sion model on randomly selected patterns from the input im-
age while generating the pseudo future frames with a weight
of 0.2. We select these patterns by simply performing
free-form brush stroke masking, using the algorithm pro-

vided in [102, 103] and refer to this diversity-focused ver-
sion as “DiffDreamer-diverse”, encouraging diversity over
long-range at a price of trading-off consistency. We supply
results for this diversity-focused setting and show frames
from a generated 500-step sequence in Fig. 8.

C. Flying-out
Even though we do not design our model specifically

for flying-out setting, DiffDreamer has a significant ad-
vantage over naı̈ve autoregression. Since we are working
on outdoor scenes, dramatic depth discontinuities will ap-
pear [23]. This is especially obvious when the flying-out
motion is not just a straight translation. Our bi-directional
method is a good counter to this issue since future frame
guidance and simultaneous refinement can alleviate the ar-
tifacts. We show example flying-out sequences in Fig. 11
and include accompanying videos with 100 steps.

D. Technical details
We use the U-Net backbone from [21] and train all mod-

els for 1M iterations with a mini-batch size of 128. We
trained our model for roughly a week and 3 days respec-
tively for LHQ [86] and ACID [42], on 2 NVIDIA RTX
8000 GPUs. We compare against the released pretrained
InfNat and InfNat-zero models, which were trained for 8
days on 10 GPUs, and 6 days on 8 GPUs respectively. We
build our model on top of Palette [71] and use the Adam
optimizer with a learning rate of 1e-4 and a 10k linear
learning rate warm-up schedule. We also employ 0.9999
EMA for our model. During both training and inference,
we use a linear noise schedule of (1e-6, 0.01) with 2000
time steps. Following prior works [42, 40], we extract
monocular-predicted disparity maps with MiDaS [62], and
sky region masks using DeepLab [13]. We adopt the au-
tocruise algorithm from [42] to sample the camera path for
both training and inference. The autocruise algorithm uses
the disparity map to estimate the skyline and horizon, then
generate a camera trajectory that avoids hitting the ground
or hills. We follow [40] during inference and use a cam-
era speed of 0.1875. We train and evaluate our model on
image resolution of 128⇥128 to be consistent with prior
work [40].

E. Autocruise specifics
We use the autocruise algorithm from [42] to generate

camera trajectories for both training and evaluation. As we



Figure 8: Perpetual view synthesis of a sequence over 500 steps.

Figure 10: Specturm of the two dimensions of scene ex-
trapolation tasks.

Figure 9: Failure cases when the model’s output is
not diverse enough to support future frames (left) or
the autocruise algorithm gets too close to the moun-
tains/ground (right).

only have raw images as training data, whose intrinsics are
unknown and cannot be easily inferred, we follow [40] and
randomly sample the field of view (FoV) between 45� and
70�, and fix to 55� during testing. Autocruise algorithm
deploys a mechanism to predict the next camera pose by
encouraging the next view to have a ⌧sky fraction of sky re-
gions (determined by thresholding disparity less than 0.08)
and a fraction of ⌧near fraction of nearby regions (deter-
mined by thresholding disparity larger than 0.4). We follow
[40] to uniformly sample ⌧near from [0.2, 0.4] and ⌧sky from
[0.25, 0.45] during training, and fix them to be 0.25 and 0.1
respectively during inference. In contrast to [42, 40], which
only moves a small fraction ⌧lerp = 0.05 of the way to
the target directions at each frame to ensure smooth camera
pose changing, we only use ⌧lerp = 0.05 during inference
of our next frame and increase ⌧lerp = 0.3 for generating

the pseudo future frame. We uniformly sample ⌧lerp from
[0.0, 0.3] during training. We direct readers to [42, 40] for
further specifics of the autocruise algorithm.

F. Mesh renderer specifics
We use a PyTorch implementation [80] of a 3D mesh

renderer [24]. Following [42], each pixel is projected into
the 3D space using its disparity and is then treated as a ver-
tex connected with its neighbors to form a triangle mesh. To
obtain the missing region masks, we follow [42] and thresh-
old the gradient of the input disparity by 0.3 to make a mask,
which refers to the regions with sharp disparity change. We
project the mask to target the camera pose to get the final
missing region mask.

G. Dataset pre-processing
Both of the LHQ [86] dataset and the ACID [42] dataset

contains many samples unsuitable for training scene ex-
trapolation models. This includes images focusing on the
foreground and images of the ground, with camera poses
pointed downward. Following [40], we filter out images
whose minimum MiDaS [62] predicted disparity value is
larger than 200.

H. Failure cases
There are two main causes for failures. First, we do not

enforce diversity of outputs. During training, the model al-
ways sees real images. This means during our pseudo pairs
generation, the corrupted version of the ground truth image
will still be diverse, even if it is under a lower frequency due
to warping artifacts. However, while we are going signifi-
cantly beyond the input image’s content, any future frame
will solely rely on the model’s outputs, which may not ex-
hibit enough diverse content for moving forward. We show
an example of this case in Fig. 9. We believe it is exciting
to extend DiffDreamer to support vector conditioning, e.g.,
CLIP embedding conditioning, to enforce output diversity.

Second, as our model has significantly better geometry
alignment than [42], the autocruise algorithm fails more of-
ten, causing the camera trajectory to hit mountains or the
ground, despite our best efforts in tuning its parameters. We
show an example of this failure case in Fig. 9.



Scene extrapolation performance can be evaluated along
two axes: image quality and (geometric and appearance)
consistency, as shown in Fig. 10. These dimensions are in-
herently at odds, forming a spectrum of trade-offs. An un-
conditional image synthesizer might prioritize image qual-
ity but would have no consistency between frames, while
models emphasizing consistency may somewhat compro-

mise raw image quality. Without enforcing consistency,
models tend to converge towards random latent space explo-
ration, as evidenced by the similarities in InfNat-0 videos.
We see our work as a starting point for future research in
navigating these trade-offs, ultimately striving towards con-
sistent perpetual view generation.



Figure 11: Flying-out 100 steps of the input images.



Figure 12: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion.



Figure 13: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion.



Figure 14: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion. Diff-
Dreamer is able to preserve consistency when there is no significant refinement needed.



Figure 15: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion, where we
encourage output diversity by additionally conditioning on input patterns.


