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1. The Doppelgangers dataset
1.1. Data collection process

The process of creating image pairs with ground truth
labels posed several challenges, including the difficulty of
finding potential doppelgangers (as described in the main
paper) and dealing with erroneously categorized images on
Wikimedia Commons. Such images can lead to incorrect
labels for image pairs that include them, which can affect
the quality of our dataset. To address this issue, we propose
to use a K-NN (K-Nearest Neighbor) algorithm to identify
those images and ensure that Doppelgangers dataset com-
prises high-quality image pairs of similar structures with
accurate labels.

Identifying incorrectly categorized images. While we
find the most Wikimedia Commons images are correctly
categorized, we found that some images are uploaded to the
wrong subcategory, perhaps because people can themselves
be confused about what side of a symmetric building they are
looking at. Unfortunately, even a single incorrectly labeled
image can lead to a large number of incorrect negative pairs
that have many feature matches (because in reality they

should be positive pairs). Therefore, to avoid noisy labels in
our dataset, we must identify and remove such incorrectly
categorized images. For this, we look at the scene graph
computed by COLMAP [13] and remove images whose label
is different from other images with a similar connectivity
pattern in the scene graph.

Specifically, we use the K-NN (K Nearest Neighbor) al-
gorithm [2] to identify such images, based on the similarity
of connectivity computed from the scene graph. First, we
construct an adjacency matrix A where each element A(i, j)
represents the number of matches between image i and im-
age j. Next, we normalize the connectivity vector for each
image to a unit vector, where the connectivity vector of
image i is the ith row vector of adjacency matrix A. We cal-
culate the similarity of connectivity between any two images
as the dot product of their respective connectivity vectors.
Suspicious images are identified as those with different la-
bels from their neighbors, and we remove pairs containing
such images from our dataset.

1.2. Dataset Statistics

Table 1 and Table 2 provide additional statistics on the
Doppelgangers training and test sets. The tables list the
test scenes and training scenes that naturally form negative
pairs, along with the average and the 95th percentile number
of matches per scene. Our dataset includes a variety of
landmarks, such as cathedrals, museums, castles, and other
notable structures. The exteriors of these landmarks exhibit
repeated and symmetric patterns. Most scenes in both the
training and test sets average more than 50 matches.

2. Visual disambiguation
2.1. Implementation details of our method

Keypoint and match masks. Given a pair of images, we
resize and pad them to a resolution of 1024 × 1024. We
then use LoFTR [14], a learning-based feature matching
method, to match the image pair. LoFTR produces matches
and scores for each match. We filter out weak matches by



Training scene Mean 95%

Aleppo Citadel 90 313
Almudena Cathedral 81 298
Arc de Triomphe du Carrousel 88 317
Brooklyn Bridge 47 152
Château de Chambord 96 344
Château de Cheverny 75 284
Château de Sceaux 134 629
Cinderella Castle 148 721
Cour Carrée (Louvre) 129 475
Cour Napoléon 94 295
Da Lat Station 84 253
Église de la Madeleine 119 390
Eiffel Tower 62 197
El Escorial 132 452
Grande Galerie (Louvre) 99 324
Grands Guichets du Louvre 140 321
Liberty Square, Taipei 65 197
London Eye 56 147
Mainz Cathedral 116 234
Market Square in Wrocław 118 429
Notre-Dame de Fourvière 92 318
Notre-Dame de Paris 174 730
Notre-Dame de Paris (Interior) 299 976
Notre-Dame de Strasbourg 122 437
Opéra Garnier 91 332
Patio de los Arrayanes 107 328
Patio de los Leones 126 306
Pavillion de Flore (Louvre) 63 212
Pont Alexandre III 55 131
Pont des Arts 74 157
Saint-Martin, Colmar 161 692
Salzburg Cathedral 98 303
St. Mark’s Basilica 79 328
St. Paul’s Cathedral 82 321
Statue of Liberty 38 113
Sukiennice 55 186
Taj Mahal 68 228
Torre de Belém 125 457
Umayyad Mosque (Courtyard) 76 252
White House 70 186

Table 1: Landmarks in the Doppelgangers training set. We
present the average and 95th percentile number of matches
per scene.

applying a threshold of 0.8 to the scores. To further refine
matches, we perform geometric verification by estimating
the fundamental matrix using RANSAC [7] with a reprojec-
tion error of 3 and a confidence level of 0.99. For this step,
we use the publicly available OpenCV implementation. We
use all the output matches to establish keypoint masks, and

Test scene Mean 95%

Alexander Nevsky Cathedral, Lódz 47 115
Alexander Nevsky Cathedral, Prešov 62 231
Alexander Nevsky Cathedral, Sofia 87 244
Alexander Nevsky Cathedral, Tallinn 53 162
Arc de Triomphe de l’Étoile 100 387
Berlin Cathedral 77 372
Brandenburg Gate 36 95
Cathedral of St. Peter and Paul, Brno 283 1458
Charlottenburg Palace 40 104
Church of the Saviour on the Blood 53 195
Deutscher and Französischer Dom 67 139
Florence Cathedral 116 340
Sleeping Beauty Castle 37 112
St. Vitus Cathedral 138 666
Sydney Harbour Bridge 29 104
Washington Square Arch 70 206

Table 2: Landmarks in the Doppelgangers test set. We
present the average and 95th percentile number of matches
per scene.

the geometrically verified matches to establish match masks.

Input alignment. After obtaining the keypoints and matches,
we estimate an affine transformation matrix using the
OpenCV implementation of RANSAC with a inlier error
of 20 pixels. We set a larger threshold, which means that an
affine transform will only roughly fit the data, because we
need a more tolerant threshold to have enough inliers to fit
a transform at all. We use the estimated affine transforma-
tion matrix to align the images, keypoint masks, and match
masks.

Network architecture. Our network architecture and pa-
rameter settings are similar to ResNet-18 [8], but we use
three residual blocks with channel dimensions of 128, 256,
and 512. After the average pooling layer, the last fully con-
nected layer takes a 512-dimensional input and outputs a
2-dimensional vector. We then apply softmax to the vector
to obtain probabilities.

Training. We train our network for 10 epochs using a batch
size of 8 with two NVIDIA GeForce RTX 2080 Ti GPUs.
The training process took approximately 9 hours for the 42
scenes and 30 hours for all scenes with image flipping aug-
mentation. For optimization, we used the Adam optimizer
with parameters β1 = 0.9 and β2 = 0.999, an initial learn-
ing rate of 5× 10−4, and linearly decayed the learning rate
starting at epoch 5 until it reaches 5× 10−6 at epoch 10.

2.2. Implementation details of baselines

We first provide additional details about the baselines
evaluated in the main paper, then describe additional base-



lines provided in this supplemental material. We also evalu-
ate two additional baselines, D2-Net [6]+RANSAC [7] and
SuperPoint [4]+SuperGlue [12], with results provided in
Section 2.3. With these two additional baselines, we cover a
large variety of feature matching methods, including classi-
cal feature detectors such as SIFT and learning-based feature
detectors such as D2-Net and SuperPoint. We also include
traditional matching methods using nearest neighbor and
RANSAC algorithms, as well as a learning-based matching
method (SuperGlue). In addition, we evaluate detector-based
feature matching methods and detector-free feature match-
ing methods, such as LoFTR. Note that all local feature
matching baselines are used as classifiers on image pairs by
thresholding either the number of matches, or the ratio of
number of matches to number of keypoints.

SIFT [11]+RANSAC [7]. We use the COLMAP [13] feature
extraction and matching modules to produce keypoints and
matches, using the default parameters. This includes the
maximum extracted features set to 8192, use of cross check
for matching, and geometric verification with a reprojection
error of 4 and confidence level of 0.999.

LoFTR [14]. We follow the same process as previously
described to use LoFTR to obtain matches for our network
input.

DINO [1]. We use the pretrained ViT [5] small version
model with a patch size of 16. We pass one image at a time
to DINO and obtain the latent code and feature maps from
the last layer. We then train a linear classifier by taking
the concatenated latent codes of images in a pair as input
to a fully connected layer and outputting the probability.
For the feature maps, we concatenate them and pass them
through a residual layer and fully connected layer to obtain
the prediction.

D2-Net [6]+RANSAC [7]. D2-Net is a learning-based
method for feature detector and descriptor. We use its pre-
traine model on MegaDepth [10] to extract keypoints and
descriptors. We then use the OpenCV implementation of the
brute force k-nearest neighbor matcher with cross-check set-
ting, and apply a ratio test with a threshold of 0.75. Finally,
we perform geometric verification with the same settings as
previously described.

SuperPoint [4]+SuperGlue [12]. SuperPoint is an efficient
learning-based method for detecting and describing key-
points. Given the keypoints and descriptors extracted from
SuperPoint, we use SuperGlue to obtain matches, where Su-
perGlue is a learning-based approach for feature matching
using a graph neural network (GNN). We use the checkpoint
trained for outdoor scenes with the recommended settings
for SuperGlue, including a maximum number of keypoints
set to 2048 and a Non-Maximum Suppression (NMS) radius
of 3.
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Figure 1: Precision-Recall (PR) curves on the Doppel-
gangers test set. The x-axis represents recall and the y-axis
represents precision. A curve approaching the top-right cor-
ner indicates better performance.
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Figure 2: Receiver operating characteristic (ROC) curves on
the Doppelgangers test set. The x-axis represents the false
positive rate, and the y-axis represents the true positive rate.
The ideal method would simultaneously have a lower false
positive rate and higher true positive rate, with the curve
approaching the top-left corner.

2.3. Quantitative results and analysis

We present additional comparisons of our method with
baselines on the Doppelgangers test set, and report the av-
erage precision (AP) and ROC AUC scores in Tables 3 and
4, respectively. Both the AP and ROC AUC scores evalu-
ate classification performance, and higher scores are better.
While AP is more focused on positive pairs, ROC AUC is
more focused on the ranking of predictions and cares equally
about positive and negative pairs. Our method outperforms
all other baselines for 15 out of 16 test landmarks, with an
average precision (AP) of 95.2% and an ROC AUC of 93.8%
across all landmarks. The SuperPoint+SuperGlue method
achieves comparable results to SIFT+RANSAC, while D2-



Average Precision D2-Net [6]+RANSAC [7] SuperPoint [4]+SuperGlue [12] SIFT [11]+RANSAC [7] LoFTR [14] DINO [1]-ViT Ours#matches %matches #matches %matches #matches %matches #matches %matches Latent code Feature map

Average of all pairs from 16 landmarks 62.3 62.5 79.6 80.7 83.4 81.2 85.3 86.0 62.0 63.3 95.2

Alexander Nevsky Cathedral, Łódź 62.1 63.7 83.7 83.8 72.7 75.9 80.7 80.4 50.9 50.3 89.5
Alexander Nevsky Cathedral, Sofia 63.6 63.7 80.6 80.7 89.5 87.6 90.0 92.2 53.0 53.6 98.5
Alexander Nevsky Cathedral, Tallinn 64.1 64.4 73.9 74.3 73.1 76.0 76.1 80.3 58.8 50.8 86.2
Arc de Triomphe 49.7 48.8 60.1 60.9 86.1 81.7 85.7 93.3 55.4 61.1 97.6
Berlin Cathedral 69.0 69.7 94.4 94.6 91.8 91.6 93.6 92.7 76.4 70.6 99.4
Brandenburg Gate 42.1 42.8 60.1 62.6 79.3 73.7 90.9 95.6 60.8 60.9 99.8
Cathedral of Saints Peter and Paul in Brno 75.0 74.6 93.1 93.1 95.8 96.4 89.8 88.4 64.6 79.9 99.8
Cathedral of St Alexander Nevsky, Prešov 73.2 74.5 89.8 89.8 82.5 74.0 86.1 85.3 62.9 64.8 94.6
Charlottenburg Palace 62.0 60.6 81.4 82.3 81.5 76.1 85.6 81.1 65.8 54.1 93.3
Church of Savior on the Spilled Blood 62.1 61.0 86.7 86.2 82.1 73.2 84.9 75.5 63.9 67.5 93.8
Deutscher und Französischer Dom (Berlin) 53.9 54.6 75.4 75.9 74.5 71.9 85.8 84.2 55.6 51.5 98.1
Florence Cathedral 60.1 58.0 82.7 82.8 90.6 83.8 84.5 82.0 54.6 63.8 94.2
Sleeping Beauty Castle 54.4 56.8 71.0 81.1 81.1 81.2 75.0 85.6 67.2 66.4 97.1
St. Vitus Cathedral 68.8 67.6 91.7 91.0 96.8 88.0 89.2 87.5 84.0 77.0 99.8
Sydney Harbour Bridge 73.5 77.3 83.6 86.8 79.4 92.3 83.8 86.2 53.0 75.5 87.0
Washington Square Arch 63.6 62.4 65.0 65.5 77.7 75.9 82.8 86.0 65.2 65.0 95.1

Table 3: Quantitative results for visual disambiguation evaluated on Doppelgangers. Results are reported as the average
precision (AP) multiplied by 100. We report both the average and the per-scene results for 16 landmarks.

ROC AUC D2-Net [6]+RANSAC [7] SuperPoint [4]+SuperGlue [12] SIFT [11]+RANSAC [7] LoFTR [14] DINO [1]-ViT Ours#matches %matches #matches %matches #matches %matches #matches %matches Latent code Feature map

Average of all pairs from 16 landmarks 53.5 53.7 76.8 76.9 80.2 77.1 78.9 80.3 60.9 61.5 93.8

Alexander Nevsky Cathedral, Łódź 58.5 60.1 78.7 78.7 69.7 72.7 73.9 74.8 49.2 49.7 87.0
Alexander Nevsky Cathedral, Sofia 57.1 57.7 82.5 82.5 87.7 84.3 86.2 89.1 53.8 49.3 98.0
Alexander Nevsky Cathedral, Tallinn 59.2 60.0 71.8 71.9 68.0 71.7 71.9 74.5 60.8 52.2 84.2
Arc de Triomphe 39.8 38.5 44.7 44.7 81.6 75.3 78.5 88.9 53.7 57.1 96.9
Berlin Cathedral 54.8 56.1 92.1 92.2 89.2 88.6 89.4 88.1 71.6 67.7 99.3
Brandenburg Gate 33.7 35.2 64.3 64.5 77.9 71.9 87.5 93.4 60.7 60.4 99.8
Cathedral of Saints Peter and Paul in Brno 61.2 60.4 89.6 89.6 94.0 95.0 84.4 82.8 62.7 75.8 99.8
Cathedral of St Alexander Nevsky, Prešov 62.3 64.8 87.4 87.4 77.0 63.9 77.4 77.6 68.9 60.6 92.4
Charlottenburg Palace 52.0 50.5 78.0 78.2 76.7 70.7 80.2 77.1 65.9 53.6 92.2
Church of Savior on the Spilled Blood 50.2 49.2 77.5 77.3 77.7 68.4 78.6 70.4 61.5 64.0 92.5
Deutscher und Französischer Dom (Berlin) 51.8 52.1 79.2 79.2 70.7 68.2 80.4 78.7 58.7 49.2 97.6
Florence Cathedral 52.7 49.5 78.2 78.2 88.7 80.3 74.6 71.9 51.3 62.5 92.5
Sleeping Beauty Castle 48.7 52.7 77.0 77.5 76.8 79.4 64.7 78.4 64.7 66.5 96.0
St. Vitus Cathedral 49.6 47.4 82.4 82.4 96.7 82.5 82.3 80.3 80.4 80.5 99.8
Sydney Harbour Bridge 69.4 71.8 86.3 86.3 76.3 91.7 77.4 79.0 50.2 72.4 80.0
Washington Square Arch 55.9 53.9 59.6 59.6 73.9 69.3 74.7 79.2 59.9 63.2 93.5

Table 4: Quantitative results for visual disambiguation evaluated on Doppelgangers. Results are reported as ROC AUC
multiplied by 100. We report both the average and the per-scene results for 16 landmarks.

Net performs worse and similarly to DINO. These results
suggest that the presence of the number or ratio of matches
is not necessarily the best indicator of whether two images
truly match.

We also present evaluation results as the precision-recall
(PR) curves shown in Figure 1, where our method shows sig-
nificant improvements over the baselines. We also provide
receiver operating characteristic (ROC) curves in Figure 2.
ROC curves illustrate the performance of classifiers across
various classification thresholds. Our model consistently
outperforms other methods across all thresholds, with the
lowest false positive rate and highest true positive rate. Ad-
ditionally, in Figure 3, we show the confusion matrix of
our network predictions using a threshold of 0.5, indicating
that our method can correctly classify approximately 88%
of image pairs in the test set at this threshold.

To analyze the correlation between our network’s pre-
dictions and the number of matches in the input pair, we
generate 2D scatter plots where the x-axis is the number of
matches and the y-axis is the probability predicted by our net-

work. The resulting scatter plots are shown in Figure 4, using
SIFT+RANSAC and LoFTR methods to compute matches,
respectively. In the figure, red dots represent pairs with a
ground truth label of negative, while blue dots represent posi-
tive pairs. The figure shows that our method can differentiate
between positive and negative image pairs, in particular in
cases when such pairs have the same number of matches.
Although differentiating doppelganger pairs with larger num-
bers of matches can be more challenging (red dots at top
right of figure), our method still predicts a probability lower
than 0.8 for most negative pairs.

2.4. Additional ablation study

We conduct an additional ablation study on the design
of network input. The results, reported as average precision
scores, are shown in Table 5. As described in the main paper,
we conduct a w/o Augmentation experiment where we train
the classifier on 44 scenes without flip augmentations. The
remaining variations are trained on the same dataset of 44
scenes without augmentation for speed of training.
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Figure 3: Confusion matrix for our method with probability
threshold set to 0.5. Our method correctly identifies 1,975
true positive pairs and 2,118 true negatives, while producing
353 false positive pairs and 210 false negatives. Overall, the
method achieves an accuracy of approximately 88%.

Full 95.2

w/o Augmentation 93.6
w/o Masks 64.7
w/o RGB 90.0
w/o Geo. verification 92.1

Table 5: Additional ablation study on network input design.
The results are reported as the average precision multiplied
by 100.

In the w/o Masks setting, we remove keypoint and match
masks from input, leaving only RGB images. This results
in significant degeneration of performance. In the w/o RGB
experiment, we remove RGB images from the input, leaving
only keypoint and match masks. This leads to a drop in
average precision from 93.6% to 90.0%. This drop is not as
significant as that stemming from removal of keypoint and
match masks, indicating the relative importance of these in-
puts. The w/o Geo. verification setting is one where matches
are not filtered and verified with Fundamental matrix esti-
mation using RANSAC, resulting in a decrease in average
prevision from 93.6% to 92.1%. In summary, the ablation
study demonstrates that keypoint and match masks are essen-
tial components of input for visual disambiguation, as they
contain rich information and cues for differentiating visually
similar pairs.

2.5. Additional qualitative results

In Figure 5, we provide additional visualizations of test
image pairs and their corresponding predicted probability by
our method on a variety of test scenes.
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Figure 4: Correlation between predicted probability of our
network and number of matches using SIFT+RANSAC (top
figure) and LoFTR (bottom figure) for pairs in all test scenes.
The x-axis represents the number of matches and the y-axis
represents the predicted probability. Blue dots represent
ground truth positive pairs and red dots represent ground
truth negative pairs. Our method produces a high probabil-
ity for most positive pairs and a low probability for most
negative pairs. Even for challenging doppelganger pairs,
our method can produce a probability of less than 0.85. In
contrast, SIFT and LoFTR methods have lots of positive
pairs with low numbers of matches, as well as a number of
negative pairs with large numbers of matches.

We visualize some failure cases in Figure 6, all of which
are negative pairs. We circle potentially useful regions for vi-
sual disambiguation in red. The pair from Alexander Nevsky



Images COLMAP [13] [13] #matches>150 Heinly et al. [9] Wilson et al. [15] Cui et al. [3] Yan et al. [16] Ours
@0.5 @0.6 @0.7 @0.8 @0.9 @0.97

Alexander Nevsky Cathedral [9] 448 ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Arc de Triomphe [9] 434 ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Berliner Dom [9] 1,618 ✗ ✓ ✓ ✗* ✓ ✗* ✓ ✓ ✓ ✓ ✓ ✗*
Big Ben [9] 402 ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Brandenburg Gate [9] 175 ✗ ✓ ✓ – ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Church on the spilled blood [9] 277 ✗ ✗ ✓ – ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Radcliffe camera [9] 282 ✗ ✓ ✓ ✗* ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Number of scenes: ✓/✗*/✗ 0/0/7 3/0/4 7/0/0 0/2/3 4/0/3 3/1/3 4/0/3 6/0/1 6/0/1 6/0/1 6/0/1 6/1/0

Table 6: Robustness evaluation of our method to the probability threshold on SfM disambiguation results. ✓ means correctly
disambiguate and reconstruct. ✗ means fail to disambiguate and ✗* means over-split. Our method exhibits robustness to the
probability threshold and successfully reconstructed 6 out of 7 scenes with probability thresholds ranging from 0.6 to 0.97.

Cathedral in Tallinn has distinct regions on the facades that
are difficult to observe due to the viewpoint. Given other
regions and structures of the building appear similar, it is
challenging even for humans to differentiate between the
images. In the pair from Charlottenburg Palace, the second
image is a zoom-in view that crops out other regions, leaving
only a small region on the golden sculpture (at the top of the
building) that can serve as a cue for visual disambiguation.
In the third pair from Washington Square Arch, the illumina-
tion differences might mask the structural differences (which
are in shadow in the second image), making it more difficult
to discern the differences between regions. The replicas of
Sleeping Beauty Castles look very similar, as shown in the
last pair of images. Images captured at night can be more
challenging to distinguish, since the background is obscured
and important cues may be lost due to lack of observability
in the background.

3. Structure from Motion disambiguation
3.1. Threshold robustness evaluation

We evaluate the robustness of our method for disambiguat-
ing SfM reconstructions to the probability threshold, and we
show additional results on 7 landmark datasets from Heinly
et al. [9] with thresholds at [0.5, 0.6, 0.7, 0.8, 0.9, 0.97]
in Table 6. At the threshold of 0.5, some incorrect pairs
are included in the scene graph, resulting in broken recon-
structions for Brandenburg Gate, Church on Spilled Blood,
and Radcliffe Camera. For the SfM disambiguation setting,
where a single bad matching pair can break a model, we care
more about false positives than keeping all positive pairs
(i.e., we care more about precision than recall). Therefore
setting the threshold to 0.5 may intuitively not be the best
strategy, hence the better performance at higher thresholds
that filter out more pairs. For thresholds ranging from 0.6 to
0.9, our method is robust, and successfully disambiguates
and reconstructs 6 out of 7 scenes. At even higher thresh-
olds, we see that one of the models (Berliner Dom) splits
apart, resulting in over-splitting of the reconstruction, but
at this strict threshold we can successfully disambiguate the
final scene (Church on Spilled Blood). Overall, our method

is able to reconstruct 6 out of 7 scenes even at this thresh-
old, demonstrating the robustness and effectiveness of our
approach.

3.2. Detailed reconstruction visualization

We present a detailed visualization of the reconstruction
results for 7 scenes rendered from different viewpoints in
Figure 7, comparing our method with vanilla COLMAP
reconstruction. The visualizations from different viewpoints
provide a clear view of the incorrect structures produced
by COLMAP, such as the double towers in the Alexander
Nevsky Cathedral and the missing sides of Big Ben. Our
method can disambiguate different sides of these highly
symmetric landmarks and produce a complete and correct
reconstruction.
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Figure 5: Additional visual disambiguation results. We vi-
sualize test image pairs with their corresponding predicted
probabilities produced by our network. The left column shows
negative pairs and the right column shows positive pairs.
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Figure 6: Failure cases. We visualize challenging doppel-
gangers pairs that are all negative pairs, but the predicted prob-
abilities by our network are high. We circle the regions that
might be helpful for disambiguation in red. For the last pair
from Sleeping Beauty Castles, we show zoomed-in views of
distinct regions with red boxes.
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Figure 7: Visualization of Structure from Motion (SfM) disambiguation results from different viewpoints. We show a set of input RGB
images at the top of each example scene, vanilla COLMAP reconstructions in the middle, and our method’s disambiguated reconstructions
at the bottom. For reconstructions where an angle is denoted, the 0° mark begins at the bottom of the birds-eye view and increases
counterclockwise about the center of the image. Note that for some landmarks, the correct reconstruction is separated into two components
when disambiguated due to a lack of camera views from sufficient viewpoints.
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