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A. Discussion on The Negative Neutralization Effect
Our Intuition 1 (Section 2.2 of the main paper) aims to bridge the meaning of nonlinear feature activation to selective

feature re-calibration. Specifically, we suppose a meaningless feature (as for the concerned filter) is possible to deteriorate
the updating of the filter if they have an intense negative inner product. This necessitates a selective feature re-calibration
to suppress/emphasize the influence of the meaningless/meaningful features, which clarifies the significance of activation
models. In this Appendix, we discuss this problem in detail.

A.1. Preliminaries

Our Intuition 1 qualitatively proposes the possible relationship of “Nonlinearity” and “(the loose) Selectivity” for feature
activation based on the influence of a feature on the given filter. Further, to quantitatively discuss our idea, as for the single
neuron learning in layer-τ , we use x and }x} as the simple measures for the influence and the intensity of the influence
of the feature x (i.e., alternative candidate) on updating of the filter w (i.e., ideal candidate), respectively, when discussing
the process x̃ “ xw,xy independently w/o the activation function and normalization layers/biases, as ∇w xw,xy “ x is a
controlling factor to the updating of w with x. Note that we omit the layer index τ for simpler notations.

A.2. Discussion

We investigate whether a meaningless feature to a given filter with an intense negative feature-filter inner produce is
possible to lead harmful effect to the filter updating by neutralizing/covering the positive effect of a meaningful feature. We
formalize this problem as follows with the assumed settings:

• Suppose that for C P Z`, w P RC ,w ‰ 0 is a given vector (i.e., the ideal candidate) and x “ rxcs ,y “ rycs P

RC , c P t1, . . . , Cu are two vector-valued random variables (i.e., the alternative candidates); x,y „ N pµ,Σq, where
N pµ,Σq |@c,Σc,c‰0 denotes a multivariate normal distribution; @x,y, they satisfy the condition |xw,xy| “ κx ď κy “

|xw,yy| , xw,xy ą 0, xw,yy ă 0, where κx and κy are given (i.e., observed) values. In particular, we use the norm of the
expectation }x} “

a

xx,xy “
a

E rx2s to represent the influence of a random variable candidate x to the given filter w
based on the Appendix A.1.

As such, we show it is possible to have }y} ě }x}, i.e., a meaningless feature y can deteriorate the updating of filter w
by neutralizing the positive effect of a meaningful feature x. Note that we change to denote feature vectors by x,y in this
discussion as now we assume them to be vector-valued random variables.

a. For dimensionC ą 1. As w ‰ 0, we can find a set of Householder matrices tHcu s.t. Hcw “ λec, where λ “ |w| P R`.
Specifically, the c-th Householder matrix Hc is computed as:

Hc “ ICˆC ´ 2hch
T
c , (1)

where ICˆC is a C-dimensional identity matrix and hc is the corresponding normal vector of Hc which can be computed
as:

hc “
w ´ |w| ec

|w ´ |w| ec|
. (2)



As such, each Hc is an orthogonal matrix that preserves the norm and inner-product of a random vector, i.e., @x, }Hcx} “

}x} and xHcw,Hcxy “ xw,xy. Then, with the given condition |xw,xy| “ κx ď κy “ |xw,yy| , xw,xy ą 0, xw,yy ă 0,
we have:

|xHcw,Hcxy| “ |xλec,Hcxy| “ λ |pHcxqc| “ κx , (3)

|xHcw,Hcyy| “ |xλec,Hcyy| “ λ |pHcyqc| “ κy , (4)

|pHcxqc| “ pHcxqc “
κx
λ

ď
κy
λ

“ |pHcyqc| “ ´ pHcyqc . (5)

That is, we use Hc to rotate the given filter w to the direction of the base vector ec such that @x,y, Hc preserves the
projections of x,y on w after the rotations. As such, we can calculate the conditional expectations of the rotated random
vectors by E

”

Hcy |pHcyqc“´
κy
λ

ı

and E
”

Hcx |pHcxqc“
κx
λ

ı

, respectively. Moreover, as Hc preserves the norms, we have
the following corollary for the problem we discuss:

Corollary A.1. }y} ě }x} ðñ

c

E
”

pHcyq
2

|pHcyqc“´
κy
λ

ı

ě

c

E
”

pHcxq
2

|pHcxqc“
κx
λ

ı

.

In particular, we first consider Hc “ HC without loss of generality because @i, j where i ‰ j, the swap of the axis-i and
-j will not change the norm of a vector. As such, after applying the linear transformations with HC , we have:

HCx,HCy „ N
`

µ1,Σ1
˘

, (6)

where µ1 “ HCµ and Σ1 “ HcΣHT
c . For clarity, following we denote µ1 and Σ1 as:

µ1 “

„

µ1
P

µ1
C

ȷ

,Σ1 “

„

Σ1
P,P Σ1

P,C

Σ1
C,P Σ1

C,C

ȷ

, (7)

where the index P denotes “from index 1 to C ´ 1”. Note that µ1
P P RC´1 (a column vector), µ1

C P R, Σ1
P,P P RC´1ˆC´1,

Σ1
P,C P RC´1 (a column vector), Σ1

C,P P RC´1 (a row vector), and Σ1
C,C P R. Then, with the calculation rules for

conditional multivariate norm distribution, for HCy, we have:

µy
P “ µ1

P ` Σ1
P,C

`

Σ1
C,C

˘´1
´

´
κy
λ

´ µ1
C

¯

“

»

—

—

—

–

µ1
1

µ1
2
...

µ1
C´1

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

Σ1
1,C

Σ1
2,C
...

Σ1
C´1,C

fi

ffi

ffi

ffi

fl

`

Σ1
C,C

˘´1
´

´
κy
λ

´ µ1
C

¯

“

»

—

—

—

–

µ1
1

µ1
2
...

µ1
C´1

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

σ1
`

κ1
y ´ µ1

C

˘

σ2
`

κ1
y ´ µ1

C

˘

...
σC´1

`

κ1
y ´ µ1

C

˘

fi

ffi

ffi

ffi

fl

“
“

µ1
c ` σ1

c

`

κ1
y ´ µ1

C

˘‰T
, (8)

where µy
P “ µ1

P |pHCyqC“´
κy
λ

P RC´1 denotes the conditional mean vector of µ1
P with the condition pHCyqC “ ´

κy

λ ; for

simplicity, we use σ1
c and κ1

y to denote Σ1
c,C

`

Σ1
C,C

˘´1
and ´

κy

λ , respectively. Similarly, for HCx, we have:

µx
P “ µ1

P ` Σ1
P,C

`

Σ1
C,C

˘´1
´κx
λ

´ µ1
C

¯

“
“

µ1
c ` σ1

c

`

κ1
x ´ µ1

C

˘‰T
, (9)

where µx
P “ µ1

P |pHCxqC“
κx
λ

P RC´1 and κ1
x denotes κx

λ .



With the above deductions, we have the following deductions for the observed projections κ1
x, κ

1
y and conditional mean

vectors µx
P ,µ

y
P of the random vector variables x,y to ensure the Corollary A.1:

E
”

pHCyq
2

|pHCyqC“κ1
y

ı

“ |µy
P |

2
`

`

κ1
y

˘2
ě |µx

P |
2

`
`

κ1
x

˘2
“ E

”

pHCxq
2

|pHCxqC“κ1
x

ı

ùñ

´

`

κ1
y

˘2
´

`

κ1
x

˘2
¯

`

C´1
ÿ

c“1

´

`

µ1
c ` σ1

c

`

κ1
y ´ µ1

C

˘˘2
´

`

µ1
c ` σ1

c

`

κ1
x ´ µ1

C

˘˘2
¯

ě 0

ùñ

´

`

κ1
y

˘2
´

`

κ1
x

˘2
¯

`

C´1
ÿ

c“1

σ1
c

`

κ1
y ´ κ1

x

˘ `

2µ1
c ` σ1

c

`

κ1
y ` κ1

x ´ 2µ1
C

˘˘

ě 0 . (10)

As @i, j where i ‰ j, the swap of the axis-i and -j does not change the norm of a vector, we can directly replace the
axis-C with an axis-c without changing the conclusion. As such, the above deductions can be extended to the general
case of @c : c “ 1, 2, . . . , C. Based on the above deductions, we identify a simple condition to ensure Corollary A.1:
@σ1

c “ 0, i.e., the transformed covariance matrix Σ1 is a diagonal matrix such that all of the elements of @Hcx „ N pµ1,Σ1q

are independent. Besides, a particular case is that if the given w and a ec has the same direction such that it does not
require Householder transformations, then, the Corollary A.1 is ensured when Σ is a diagonal matrix (i.e., the elements of
@x „ N pµ,Σq are independent).

b. For dimension C “ 1. The condition C “ 1 ensures w to have the same direction with e1. Then, as Σ P R1ˆ1 is a
single-value diagonal matrix, the Corollary A.1 is ensured according to the preceding deductions.

Summary. Our discussions of the cases a and b show that the non-important features with intense negative feature-filter inner
produce is possible to neutral/cover the positive contribution of important features if without selective feature re-calibrations
to cast oriented suppressions/emphasises on the non-important/meaningful features, respectively. This clarifies the meaning
of feature activation models from the perspective of MCDM.

B. Discussions, Deductions, and Proofs for Section 2.2
B.1. Proof of Proposition 1

In the main paper, we introduce Proposition 1 based on Intuition 1 and Definition 1.

Definition 1. For a function ρ : R Ñ R, we refer to this ρ as a function that holds Loose Selectivity (on R) if: Dx̃, ỹ P R
while x̃, ỹ ‰ 0 and x̃ ‰ ỹ s.t. ρ px̃q ‰ ρ pỹq.

Proposition 1. For a given ρ and ϕ : ϕ px̃q “ ρ px̃q x̃, then, ρ satisfies Definition 1 ðñ ϕ is nonlinear about x̃.

Proposition ùñ. ρ satisfies Definition 1 ùñ ϕ is nonlinear about x̃.

Proof. 7 Dx̃, ỹ P R where x̃ ‰ ỹ, x̃ ‰ 0, and ỹ ‰ 0 s.t. ρ px̃q ‰ ρ pỹq, then, without loss of generality, let (1) ρx, ρy denote
ρ px̃q , ρ pỹq, respectively; (2) ∆x̃ “ ỹ ´ x̃ and ∆x̃ “ kx̃, k P R. As such, we have:

ϕ pỹq “ ρy ỹ “ ρy px̃` ∆x̃q “ ρy px̃` kx̃q “ ρy p1 ` kq x̃ . (11)

As our goal is to prove the nonlinearity of ϕ for x̃, ỹ P R, we first assume that ϕ is linear about @x̃, ỹ P R (i.e., the
contradictory of the conclusion) and derive the paradox with this assumption, such that the nonlinearity of ϕ can be proved.

That is, with assuming that ϕ is linear about @x̃, ỹ P R, we have:

ϕ pỹq “ ϕ px̃` ∆x̃q “ ϕ px̃q ` ϕ p∆x̃q

“ ϕ px̃q ` ϕ pkx̃q “ ϕ px̃q ` kϕ px̃q

“ ρxx̃` kρxx̃ “ ρx p1 ` kq x̃ . (12)

That is,
ρy p1 ` kq x̃ “ ρx p1 ` kq x̃ . (13)

Then, as we have the conditions: x̃ ‰ ỹ, x̃ ‰ 0, and kx̃ “ ỹ´ x̃, we have k ‰ 0. As such, to ensure the assumed conclusion,
we have the following possible corollary: ρy “ ρx _ x̃ “ 0 _ k “ ´1 (note that “_” denotes logical “or”). Further, as



we have the primary prerequisites: ρy ‰ ρx, x̃ ‰ 0, and ỹ ‰ 0, we find only the conclusion k “ ´1 is possible as for this
corollary. However, with k “ ´1, we have ỹ “ x̃` ∆x̃ “ x̃` kx̃ “ x̃´ x̃ “ 0, which still violates the prerequisite: ỹ ‰ 0.
Therefore, the assumption: ϕ is linear about @x̃, ỹ P R leads to a paradox under the given prerequisite condition: ρ satisfies
Definition 1.

This completes the proof. ■

Proposition ðù. ρ satisfies Definition 1 ðù ϕ is nonlinear about x̃.

Proof. 7 ϕ is nonlinear @x̃ P R, we have: Dx̃, ỹ P R, k P R where x̃ ‰ ỹ and k ‰ 0 s.t. ϕ pkx̃` ỹq ‰ ϕ pkx̃q ` ϕ pỹq

where kx̃, kx̃ ` ỹ P R. As our goal is to prove that ρ satisfies Definition 1, we first assume that a nonlinear function ρ about
x̃ P R can violate the conditions of Definition 1 and derive the paradox with this assumption, such that the proposition can
be proved.

Without loss of generality, we let z̃ “ kx̃, z̃ P R. Then, suppose that @ũ, ṽ P R, ρ pũq “ ρ pṽq “ m,m P R, we have:

ϕ pkx̃` ỹq “ ϕ pz̃ ` ỹq “ ρ pz̃ ` ỹq pz̃ ` ỹq

“ ρ pz̃ ` ỹq z̃ ` ρ pz̃ ` ỹq ỹ “ mz̃ `mỹ

“ ρ pz̃q z̃ ` ρ pỹq ỹ “ ϕ pz̃q ` ϕ pỹq . (14)

That is,
ϕ pkx̃` ỹq “ ϕ pz̃q ` ϕ pỹq “ ϕ pkx̃q ` ϕ pỹq , (15)

which violates the prerequisite: ϕ pkx̃` ỹq ‰ ϕ pkx̃q ` ϕ pỹq. Therefore, the assumption: the reweighting function of ϕ, i.e.,
ρ is an identity function about any x̃ P R leads to a paradox under the given prerequisite condition: ϕ is a nonlinear function
on R.

This completes the proof. ■

Summary. We complete the proofs for both the partial propositions (i.e., directions “ùñ” and “ðù”) of Proposition 1,
which ensures Proposition 1.

B.2. Proof of Proposition 2

In the main paper, we introduce Proposition 2 based on Intuition 2 and Property 1.
For simpler notations, in the following, we denote ϱ px̃q as ϱx, @x̃ P R such that ς pϱ px̃qq can be denoted as ς pϱxq.

Property 1. @x̃, ỹ P R, |ς pϱxq| ě |ς pϱyq| if ϱx ě ϱy . Note that ϱ px̃q is continuous and differentiable at x̃,@x̃ P R .

Where ς pϱxq is continuous and differentiable about ϱx on the domain (or at most has finite points where the left- and
right-hand limits of the function exist but are unequal). Note that Property 1 is ensured by ς , as the monotonicity of |ϱx|

about ϱx is uncertain. Moreover, Property 1 can be met with the more specific conditions, i.e.,

Proposition 2. Property 1 ðñ (1) ς pϱxq is monotonically increasing (i.e., non-decreasing) about ϱx ^ ς pϱxq ě 0 _ (2)
ς pϱxq is monotonically decreasing (i.e., non-increasing) about ϱx ^ ς pϱxq ď 0 (^ and _ denote logical “and” and “or,”
respectively).

In particular, as for the cases ς pϱxq ě 0 and ς pϱxq ď 0 which are symmetrical about ς pϱxq “ 0 and mutually exclusive
with each other excluding ς pϱxq “ 0, the former can be easily extended to the latter once proven and vice versa.

Proposition ùñ. Property 1 ùñ (1) ς pϱxq is monotonically increasing (i.e., non-decreasing) about ϱx ^ ς pϱxq ě 0 _ (2)
ς pϱxq is monotonically decreasing (i.e., non-increasing) about ϱx ^ ς pϱxq ď 0 .

Proof.

First, we assume that we can find a ς pϱxq ą 0 and ς pϱyq ă 0, simultaneously. As such, our goal is to find a paradox with
this assumption.

With the prerequisite condition: ς pϱxq is continuous about ϱx, @ϱx and the assumed condition: Dϱx, ϱy s.t. ς pϱxq ą

0, ς pϱyq ą 0, suppose pϱz, ς pϱzqq : ϱx ą ϱz ą ϱy is a moving point between pϱy, ς pϱyqq and pϱx, ς pϱxqq, then, pϱz, ς pϱzqq

traverses through the point pϱz0q , 0 and we have:

ς pϱxq ě |ς pϱz0q| “ 0 ě |ς pϱyq| “ ´ς pϱyq ùñ |ς pϱyq| “ 0 . (16)



But this deduced conclusion leads to a paradox to the assumption: ς pϱyq ă 0, so we cannot find such a ϱy and ς pϱyq.
Besides, it can be deduced that both the cases Dς pϱxq ą 0, ς pϱyq “ 0 and Dς pϱxq “ 0, ς pϱyq ă 0 does not lead to

paradoxes. That is, with the above deductions, we have @ϱx, ς pϱxq ě 0 _ ς pϱxq ď 0.
Next, we first consider the condition: ς pϱxq ě 0. Then, Property 1 can be specified to: @ϱx, ϱy in the domain, |ς pϱxq| “

ς pϱxq ě ς pϱyq “ |ς pϱyq| if ϱx ě ϱy . Therefore, Property 1 is monotonically increasing about ϱx, @ϱx.
Similarly, with the condition: ς pϱxq ď 0, Property 1 can be specified to: @ϱx, ϱy in the domain, |ς pϱxq| “ ´ς pϱxq ě

´ς pϱyq “ |ς pϱyq| if ϱx ě ϱy , i.e., ς pϱxq ď ς pϱyq. Therefore, Property 1 is monotonically decreasing about ϱx, @ϱx.
This completes the proof. ■

Proposition ðù. Property 1 ðù (1) ς pϱxq is monotonically increasing (i.e., non-decreasing) about ϱx ^ ς pϱxq ě 0 _ (2)
ς pϱxq is monotonically decreasing (i.e., non-increasing) about ϱx ^ ς pϱxq ď 0 .

Proof. With the condition (1): @ϱx, |ς pϱxq| “ ς pϱxq and ς pϱxq is monotonically increasing about ϱx, we have: @ϱx, ϱy in
the domain, |ς pϱxq| “ ς pϱxq ě ς pϱyq “ |ς pϱyq| if ϱx ě ϱy . This ensures the Property 1.

Similarly, with the condition (2), we have: |ς pϱxq| “ ´ς pϱxq ě ´ς pϱyq “ |ς pϱyq| if ϱx ě ϱy . This ensures the
Property 1.

This completes the proof. ■

Summary. We complete the proofs for both the partial propositions (i.e., directions “ùñ” and “ðù”) of Proposition 2,
which ensures Proposition 2.

B.3. Properties 2, 3, and 4

In the main paper, we introduce the Intuition 4 (Constraint on Negative Influence (CNI)), 5 (Preservation on Positive
Influence (PPI)), and 6 (Oriented Discriminativeness (OD)), which inspire the Properties 2 ((CNI)), 3 ((PPI)), 4 ((OD)),
respectively. In the following, we introduce Properties 2, 3, and 4 and the Propositions 3, 4 corresponded to Properties 2, 3
respectively.

A retrospect of the Intuitions 4, 5, and 6. In the main paper, we aim to find further properties to embody the term-B ν and
adjuster ς by specifying the relationships of the ideal similarity ϱ and its adjuster ς , with the preceding deductions and new
intuitive assumptions, termed as CNI, PPI, and OD:

• CNI: We suppose any non-important candidate have constrained influence.

• PPI: We suppose any important candidates x,y with close importance scores ϱ px̃q and ϱ pỹq will have comparable influ-
ence, i.e., the influence of the one with lower weight will not be covered by the higher one.

• OD: We suppose the core of the Act model, i.e., the reweighting function ρ, has a sufficient capability to differentiate
between important/non-important candidates.

They suggest three dependent constraints on the influence of negative and positive candidates, which we formalize as three
Properties, i.e., (CNI), (PPI), and (OD), and two corresponding Propositions that further specify the Properties for practical
IIEUs, with a set of simple constraints: (1) ϕ p´8q “ 0 (i.e., we adopt the boundedness constraint for self-gated Act
functions [22] to ensure the stability and convergence of training, with the pre-condition that ρ px̃q is lower-bounded); (2)
∇x̃ϱ px̃q is bounded; (3) ϱ px̃q

´1
x̃ is bounded at @ϱ px̃q ‰ 0. We formalize the corresponding Properties as follows:

Property 2. (CNI) Dη P R,Mx´ ě 0 s.t. @ϱ px̃q ă η we have |ρ px̃q x̃| |ϱpx̃qăηď Mx´ .

Property 3. (PPI) Dη P R,Mx` ě 0, s.t. @ϱ px̃q ą η we have |∇x̃ρ px̃q x̃| |ϱpx̃qąηď Mx` at any x̃ where ϕ px̃q is
differentiable.

Property 4. (OD) Dη P R and Dϵρ, δρ ą 0 s.t. if ϱ px̃q ą η ą ϱ pỹq, then, @ϱ px̃q ´ ϱ pỹq ą ϵρ we have ς pϱ px̃qq ´ ς pϱ pỹqq ą

δρ. (Note that δρ is big enough to prevent gradient vanishing)

Then, with all the preceding assumed and deduced conditions, we formalize the corresponding Propositions as follows:

Proposition 3. ϕ p´8q “ 0 ùñ Property 2.

Proposition 4. (1) ρ px̃q and ∇x̃ϱ px̃q are bounded ^ (2) ϱ px̃q
´1
x̃ is bounded at @ϱ px̃q ‰ 0 ùñ Property 3.

The suggested Intuitions and their inspired Properties lay a basis for us to present IIEU.



B.4. Proof of Proposition 3

Proposition. With the assumed/deduced pre-conditions, we have: ϕ p´8q “ 0 ùñ Dη P R,Mx´ ě 0 s.t. @ϱ px̃q ă η we
have |ρ px̃q x̃| |ϱpx̃qăηď Mx´ . Note that ϕ px̃q “ ρ px̃q x̃ “ ς pϱ px̃qq x̃.

Proof.

a. Basic case. First, we consider the basic case where ς pϱ px̃qq is fully continuous and differentiable about ϱ px̃q.
Then, as we have the pre-condition: ϱ px̃q is continuous and differentiable about x̃ on R (mentioned in Property 1), for

@x̃ P ra, bs, where a, b P R and ra, bs an arbitrary finite interval, then, ϱ px̃q and ς pϱ px̃qq are bounded, simultaneously.
Then, because ς pϱ px̃qq and x̃ are both bounded on x̃ P ra, bs, we have |ς pϱ px̃qq x̃| bounded. As the upper-bound of

|ς pϱ px̃qq x̃| exists, then, without loss of generality, let Mx´ denote the set of the upper-bound, such that we have Mx´ P

Mx´ . That is, DMx´ s.t. |ϕ px̃q| ď Mx´ . As such, the conclusion: |ρ px̃q x̃| |ϱpx̃qăηď Mx´ holds as long as |ς pϱ px̃qq x̃| is
upper-bounded when ϱ px̃q ă η.

With the above deduction, that |ς pϱ px̃qq x̃| is unbounded is only possible when ϱ px̃q approaches ´8 where x̃ approaches
to ´8 or `8. Note that now the direction is unknown. But, as the given condition ϕ p´8q “ 0 constraints that:

lim
ϱpx̃qÑ´8

|ς pϱ px̃qq x̃| “ 0 , (17)

then, no matter x̃ approaches to ´8 or `8, we have |ς pϱ px̃qq x̃| bounded, i.e., |ρ px̃q x̃| |ϱpx̃qăηď Mx´ .
This completes the proof. ■

b. Extended case. Here, we discuss the extended case: ς pϱ px̃qq is fully continuous about ϱ px̃q while has a finite number of
non-differentiable points where the corresponding left-hand and right-hand limits exist but are unequal.

As the left-hand and right-hand limits always exist for any point on ς pϱ px̃qq, the boundedness of ς pϱ px̃qq is ensured
at any finite interval. That is, like in the fully continuous case, the conclusion is only possible to be violated when ϱ px̃q

approaches ´8.
But, because the number of the non-differentiable points is finite and the continuity always holds, we can still find such a η

which is smaller than all the ϱ px̃q where ς pϱ px̃qq are non-differentiable but both the corresponding left-hand and right-hand
limits exist. Therefore, the proof of the case a can be directly generalized to the case b.

This completes the proof. ■

Further discussion. As a corollary to Proposition 3, we identify a more specific condition to ensure Proposition 3. This
specific condition is easier to apply to help the design of activation models, which we suggest as: (1) ς p´8q “ 0; (2)
Dηϱ P R and @k P R, if |ς pϱ px̃qq| ď

ˇ

ˇ

k
x̃

ˇ

ˇ holds for @ϱ px̃q ă ηϱ.
That is, in intuition, we suppose as long as the (absolute) reweighting function |ς pϱ px̃qq| changes slower than the reference

function
ˇ

ˇ

k
x̃

ˇ

ˇ when the ideal similarity ϱ px̃q gradually approaches to ´8, the Proposition 3 holds.

Proof. As discussed in the proofs of the cases a and b, the boundedness of |ϕ px̃q| is only possible to be violated when ϱ px̃q

approaches ´8 where x̃ approaches to ´8 or `8. Then, as we have the condition: |ς pϱ px̃qq| ď
ˇ

ˇ

k
x̃

ˇ

ˇ for @ϱ px̃q ă ηϱ, we
have:

|ς pϱ px̃qq x̃| |ϱpx̃qăηϱ
“ |ς pϱ px̃qq| |x̃| |ϱpx̃qăηϱ

ď

ˇ

ˇ

ˇ

ˇ

k

x̃

ˇ

ˇ

ˇ

ˇ

|x̃| |ϱpx̃qăηϱ
“ |k| |ϱpx̃qăηϱ

, (18)

where limϱpx̃qÑ´8 |k| “ |k|. That is, |ς pϱ px̃qq x̃| is bounded.
Therefore, we complete the proof. ■

Summary. We complete the proofs for the cases a and b of Proposition 3, which ensures Proposition 3. We further the
discussion to a more specific condition that we find easier to apply to help the design of neural feature activation models.

B.5. Proof of Proposition 4

Proposition. (1) ρ px̃q and ∇x̃ϱ px̃q are bounded ^ (2) ϱ px̃q
´1
x̃ is bounded at @ϱ px̃q ‰ 0 ùñ Dη P R,Mx` ě 0, s.t.

@ϱ px̃q ą η we have |∇x̃ρ px̃q x̃| |ϱpx̃qąηď Mx` at any x̃ where ϕ px̃q is differentiable.



A weaker condition: ϱ px̃q “ x̃. We begin by considering this weaker condition and then extend the corresponding proof to
the general case.

Proof.

a. Basic case. First, we discuss the basic case where ς pϱ px̃qq is fully continuous and differentiable about ϱ px̃q.
Then, combining the pre-condition: ϱ px̃q is continuous and differentiable about x̃ on R (mentioned in Property 1), we have

∇x̃ς pϱ px̃qq x̃ bounded at x̃ for all x̃ P ra, bs, where a, b P R and ra, bs an arbitrary finite interval, such that |∇x̃ς pϱ px̃qq x̃| is
also bounded on the finite interval of x̃. That is, DMx` ě 0 s.t. |∇x̃ρ px̃q x̃| |x̃Pra,bsď Mx` . Therefore, the only case that is
possible to violate the boundedness of |∇x̃ς pϱ px̃qq x̃| is when ϱ px̃q approaching `8. Note that the relevant condition ϱ px̃q

approaching ´8 is excluded, since we have the condition: ϱ px̃q ą η, η P R.
Then, as in this case we discuss ϱ px̃q “ x̃, we have:

|∇x̃ς pϱ px̃qq x̃| “ |∇x̃ς px̃q x̃| “

ˇ

ˇ

ˇ

ˇ

Bς

Bx̃
x̃` ς px̃q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Bς

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

` |ς px̃q| , (19)

where ρ px̃q “ ς px̃q is bounded (i.e., the given condition (1)). As such, the upper-boundedness of |∇x̃ς px̃q x̃| can be ensured
by

ˇ

ˇ

Bς
Bx̃ x̃

ˇ

ˇ if
ˇ

ˇ

Bς
Bx̃ x̃

ˇ

ˇ is upper-bounded.
In order to deduce the upper-boundedness of

ˇ

ˇ

Bς
Bx̃ x̃

ˇ

ˇ, we introduce a reference function ln px̃q which does not have an upper-
bound on x̃ P R. Moreover, as noted in the main paper, we discuss the case where ς pϱ px̃qq ě 0 without loss of generality.
This brings a deduced condition: ς pϱ px̃qq is monotonically increasing about ϱ px̃q (i.e., ϱx denoted in Appendix B.2), which
we have proved in Appendix B.2. As such, for the assumed case ϱ px̃q “ x̃, we have ς px̃q is monotonically increasing about
x̃. Then, as ς px̃q is upper-bounded, we suppose that ς px̃q ă Mρ for all x̃ P R. Further, as we have the conditions (1) ln px̃q

and ς px̃q both are continuous, differentiable, and monotonically increasing about x̃; (2) ς px̃q ă Mρ for all x̃; and (3) ln px̃q

does not have an upper-bound, we have the conclusion: Dη P R` s.t. (1) ln px̃q |x̃ąηą Mρ and (2) ∇x̃ ln px̃q ą ∇x̃ς px̃q ě 0
for all x̃ ą η.

Combining the above-given conditions and the deduced conclusions, for any x̃ ą η, we have:
ˇ

ˇ

ˇ

ˇ

Bς

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bς

Bx̃

ˇ

ˇ

ˇ

ˇ

|x̃| “ |∇x̃ς px̃q| |x̃|

ă |∇x̃ ln px̃q| |x̃| “

ˇ

ˇ

ˇ

ˇ

1

x̃

ˇ

ˇ

ˇ

ˇ

|x̃| “ 1 . (20)

That is,

lim
x̃Ñ`8

ˇ

ˇ

ˇ

ˇ

Bς

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

1

x̃

ˇ

ˇ

ˇ

ˇ

|x̃| “ 1 . (21)

So it ensures the conclusion: Dη P R s.t. |∇x̃ς px̃q x̃| |x̃ąηď Mx` .
Therefore, we complete the proof. ■

b. Extended case. Here, we discuss the extended case: ς pϱ px̃qq is fully continuous about ϱ px̃q while has a finite number of
non-differentiable points where the corresponding left-hand and right-hand limits exist but are unequal.

As the left-hand and right-hand limits always exist for any point on ς pϱ px̃qq, the boundedness of ς pϱ px̃qq is ensured at
any finite interval. That is, like in the case a, the conclusion is only possible to be violated when ϱ px̃q approaches `8. But,
because the number of the non-differentiable points is finite and the continuity always holds, we can still find such a η which
is larger than any ϱ px̃q where ς pϱ px̃qq are non-differentiable but both the corresponding left-hand and right-hand limits exist.
Therefore, the proof of the case a can be directly generalized to the case b.

Therefore, we complete the proof. ■

The general condition. Here, we extend the above proof of the weaker condition to the general condition.

Proof.

a. Basic case. First, we discuss the basic case where ς pϱ px̃qq is fully continuous and differentiable about ϱ px̃q.



As we deduced in the weaker condition, the conclusion to be proved can be ensured by: |∇x̃ς pϱ px̃qq x̃| is upper-bounded,
which holds on any finite interval and only possible to be violated when ϱ px̃q is approaching `8.

Then, since we have:

|∇x̃ς pϱ px̃qq x̃| “

ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

Bϱ

Bx̃
x̃` ς pϱ px̃qq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

Bϱ

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

` |ς pϱ px̃qq| , (22)

where |ς pϱ px̃qq| is bounded (i.e., the given condition (1)) such that the upper-boundedness of |∇x̃ς pϱ px̃qq x̃| can be ensured
by

ˇ

ˇ

ˇ

Bς
Bϱ

Bϱ
Bx̃ x̃

ˇ

ˇ

ˇ
if

ˇ

ˇ

ˇ

Bς
Bϱ

Bϱ
Bx̃ x̃

ˇ

ˇ

ˇ
is upper-bounded.

In order to deduce the upper-boundedness of
ˇ

ˇ

ˇ

Bς
Bϱ

Bϱ
Bx̃ x̃

ˇ

ˇ

ˇ
, we introduce a reference function ln pϱ px̃qq which does not have

an upper-bound on ϱ px̃q P R. Moreover, like in the weaker condition, without loss of generality, we discuss the case where
ς pϱ px̃qq ě 0 such that we can adopt the proved conclusion as a new condition: ς pϱ px̃qq is monotonically increasing about
ϱ px̃q, which we have proved in Appendix B.2. Then, as ς pϱ px̃qq is upper-bounded, we suppose that ς pϱ px̃qq ă Mρ for all
ϱ px̃q. Further, as we have the conditions: (1) ln pϱ px̃qq and ς pϱ px̃qq both are continuous, differentiable, and monotonically
increasing about ϱ px̃q; (2) ς pϱ px̃qq ă Mρ for all ϱ px̃q; and (3) ln pϱ px̃qq does not have an upper-bound, we have the
conclusion: Dη P R` s.t. (1) ln pϱ px̃qq |ϱpx̃qąηą Mρ, and (2) ∇ϱpx̃q ln pϱ px̃qq ą ∇ϱpx̃qς pϱ px̃qq ě 0 for all ϱ px̃q ą η.

Combining the above-given conditions and the deduced conclusions, for any ϱ px̃q ą η, we have:
ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

Bϱ

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

Bϱ

Bx̃

ˇ

ˇ

ˇ

ˇ

|x̃| “

ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bϱ

Bx̃

ˇ

ˇ

ˇ

ˇ

|x̃|

ă

ˇ

ˇ

ˇ

ˇ

1

ϱ px̃q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bϱ

Bx̃

ˇ

ˇ

ˇ

ˇ

|x̃| “

ˇ

ˇ

ˇ
ϱ px̃q

´1
x̃

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bϱ

Bx̃

ˇ

ˇ

ˇ

ˇ

, (23)

where
ˇ

ˇ

ˇ
ϱ px̃q

´1
x̃

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ

Bϱ
Bx̃

ˇ

ˇ

ˇ
are bounded (at @ϱ px̃q ‰ 0) since both the boundednesses of ϱ px̃q

´1
x̃ (at @ϱ px̃q ‰ 0) and

∇x̃ϱ px̃q are given conditions. Then, without loss of generality, suppose that
ˇ

ˇ

ˇ
ϱ px̃q

´1
x̃

ˇ

ˇ

ˇ
ă Mu1

for all ϱ px̃q ‰ 0 and
ˇ

ˇ

ˇ

Bϱ
Bx̃

ˇ

ˇ

ˇ
ă Mu2

, we have:

lim
ϱpx̃qÑ`8

ˇ

ˇ

ˇ

ˇ

Bς

Bϱ

Bϱ

Bx̃
x̃

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ
ϱ px̃q

´1
x̃

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bϱ

Bx̃

ˇ

ˇ

ˇ

ˇ

ă Mu1Mu2 . (24)

Note in particular that ϱ px̃q “ 0 does not violate the boundedness of |∇x̃ς pϱ px̃qq x̃| because it can be included in a given
finite interval which we proved to preserve the conclusion. That is, let Mx` “ Mu1

Mu2
, we have the conclusion: Dη P R,

s.t. |∇x̃ς pϱ px̃qq x̃| |ϱpx̃qąηď Mx` .
Therefore, we complete the proof. ■

b. Extended case. Here, we consider the extended case: ς pϱ px̃qq is fully continuous about ϱ px̃q while has a finite number
of non-differentiable points where the corresponding left-hand and right-hand limits exist but are unequal.

As the left-hand and right-hand limits always exist for any point on ς pϱ px̃qq, the boundedness of ς pϱ px̃qq is ensured at
any finite interval. That is, like in the case a, the conclusion is only possible to be violated when ϱ px̃q is approaching `8.
But, because the number of the non-differentiable points is finite and the continuity always holds, we can still find such a
η which is larger than any ϱ px̃q where ς pϱ px̃qq are non-differentiable but both the corresponding left-hand and right-hand
limits exist. Therefore, the proof of the case a can be directly generalized to the case b.

Therefore, we complete the proof. ■

Summary. We complete the proofs for the cases a and b of Proposition 4, which ensures Proposition 4.

C. Calculations for Section 2.3
C.1. The Range of Term-S

In the following, we show the derivations for Equation (4) (i.e., the range of the term-S of IIEU-B) of the main paper.



We discuss the common case with BN [11] applied (denoted by ψ), i.e., now we have:

x̃ :“ ψ pxw,xyq “ γ
xw,xy ´ µ

σ
` β , (25)

where γ, β P R denote the channel scaling and shift factors of BN; σ P R ‰ 0 and µ P R denote the standard deviation and
mean of x̃ for the channel-c (i.e., the current channel).

Let E “ }x} }w} ‰ 0. As the vanilla cosine similarity xw,xy

}w}}x}
P r0, 1s, the codomain of term-S , i.e., x̃

}w}}x}
can be

calculated as:
#

´
|γ|

σ ´
|γ|µ
Eσ `

β
E ď x̃

E ď
|γ|

σ ´
|γ|µ
Eσ `

β
E ,

´
|γ|

σ `
|γ|µ
Eσ `

β
E ď x̃

E ď
|γ|

σ `
|γ|µ
Eσ `

β
E .

γ ě 0 ,

γ ă 0 .
(26)

Then, let r “
γ
σ , we have:

´ |r| `
β ´ rµ

E
ď
x̃

E
ď |r| `

β ´ rµ

E
, (27)

i.e., the Equation (4) we present in the main paper.

C.2. The Derivative of Term-S about w

We show the calculation of Equation (5) of the main paper, i.e., the (partial) derivative of the term-S s pwq about w
(∇ws pwq) as follows:

∇ws pwq “ ∇w
xw,xy

}w} }x}
“ }x}

´1

˜

B }w}
´1

Bw
¨ wTx ` x ¨ }w}

´1

¸

“ }x}
´1

ˆ

´ }w}
´2

¨
w

}w}
¨ wTx `

x

}w}

˙

“ }x}
´1

˜

}w}
2
x ´ wwTx

}w}
3

¸

“
}w}

2
x ´ wwTx

}x} }w}
3 . (28)

C.3. The Derivative of Term-B about w

We show the calculation of Equation (6) of the main paper, i.e., the (partial) derivative of the term-B ν pwq about w
(∇wν pwq) as follows:

∇wν pwq “ ∇wδ
´

9γxw,xy ` 9β
¯

“

Bδ
´

9γxw,xy ` 9β
¯

B

´

9γxw,xy ` 9β
¯ ¨

B

´

9γxw,xy ` 9β
¯

Bw

“ δ
´

9γxw,xy ` 9β
¯ ´

1 ´ δ
´

9γxw,xy ` 9β
¯¯

¨ 9γ ¨
1

N
¨
ÿN

n“1
x pnq

“ δ

ˆ

9γ

N
wT

ÿN

n“1
x pnq

˙ ˆ

1 ´ δ

ˆ

9γ

N
wT

ÿN

n“1
x pnq

˙˙

¨
9γ

N

ÿN

n“1
x pnq

“ δ
´

9γwTx ` 9β
¯ ´

1 ´ δ
´

9γwTx ` 9β
¯¯

9γx , (29)

where N “ H ˆ L denotes the number of feature vectors in the current feature map (a tensor) of the layer-τ (i.e., X with a
spatial resolution of H ˆ L, as assumed in Section 2.1 of the main paper). Note that δ denotes the Sigmoid function and we
adopt the known derivation rule of the Sigmoid function, i.e., @x P R, δ pxq “ δ pxq p1 ´ δ pxqq . This derivation rule can be
directly generalized to the case of vector-valued inputs.



C.4. Calculation of Equation (7)

From Equation (7) of the main paper, we identify term-S enabling each neuron to model detailed cross-channel feature-
filter interactions at every spatial coordinate and leverage these informative cues to improve the filter updating.

In the following, we show the calculation of Equation (7):

wwTx “

»

—

—

—

–

w1

w2

...
wC

fi

ffi

ffi

ffi

fl

“

w1 w2 . . . wC

‰

»

—

—

—

–

x1

x2

...
xC

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

w1w1 w1w2 . . . w1wC

w2w1 w2w2 . . . w2wC

...
...

. . .
...

wCw1 wCw2 . . . wCwC

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x1

x2

...
xC

fi

ffi

ffi

ffi

fl

“ w
´

ÿC

c“1
wcxc

¯

“

´

ÿC

c“1
wcxc

¯

w . (30)

C.5. Proof of The Inequality: |∇wν pwq| ď 1
4 | 9γ| |x|

First, we adopt the conclusion for ∇wν pwq in Appendix C.3: ∇wν pwq “ δ
´

9γwTx ` 9β
¯ ´

1 ´ δ
´

9γwTx ` 9β
¯¯

9γx .

As 9γ, 9β P R, w,x P RC , and wTx P R, let z “ 9γwTx ` 9β P R without loss of generality. Then, we have:

|∇wν pwq| “

ˇ

ˇ

ˇ
δ

´

9γwTx` 9β
¯ ´

1 ´ δ
´

9γwTx ` 9β
¯¯

9γx
ˇ

ˇ

ˇ
“ |δ pzq p1 ´ δ pzqq 9γx|

ď sup p|δ pzq p1 ´ δ pzqq|q ¨ | 9γ| ¨ |x| “
1

2

ˆ

1 ´
1

2

˙

| 9γ| |x| “
1

4
| 9γ| |x| . (31)

That is: |∇wν pwq| ď 1
4 | 9γ| |x|. Therefore, we complete the proof. ■

D. Training Configures
In the following, we detail the training configures we adopt in the experiments on ImageNet [6] Classification.

D.1. ImageNet Classification

Training configures for ResNet To make fair comparisons with existing activation models trained with various configures,
we adopt the three different basic configures applied in [25], [15], and [26] to train ResNets equipped with our IIEU-B/-DC
and compare with the baseline and popular/SoTA activation functions using the corresponding configures, respectively, in
Section 4 of the main paper (i.e., Experiment), where we denote these three configures by cfg-1, -2, and -3, respectively. This
allows us to investigate the stability of activation models with different training conditions. We detail the cfg-1, -2, and -3 as
follows:

1. cfg-1. This training configure applies 120 epochs using the basic SGD optimizer with the weight decay of 1´4 and mo-
mentum of 0.9, where the first 5 epochs are the linear warm-up epochs. The learning rate starts from 0.1 with a batch size
of 256 by default and decays to 1´5 following the cosine schedule. After the main training schedule, it applies an extra 10
cool-down epochs with the minimum learning rate 1´5 to stabilize the model weights. It follows the common practice to
first randomly resize the input images and then crop the input images to the size of 224 ˆ 224. In the test phase, each input
images are center cropped to 224 ˆ 224. It adopts the standard data augmentation strategy used in [13, 25, 15, 10].

2. cfg-2. cfg-2 has two differences compared to cfg-1: (1) it applies the linear learning rate schedule which starts from 0.1 and
decays to 1´5 (i.e., the minimum learning rate); (2) it removes the extra 10 cool-down epochs.

3. cfg-3. cfg-3 has one difference compared to cfg-1: (1) it applies a cosine learning rate with only 100 epochs.

Training configures for MobileNetV2 and ShuffleNetV2 We train MobileNetV2(s) and ShuffleNetV2(s) with two different
configures, where the former is a standard configure used in [9, 20, 17, 3, 16, 15] and the later replaces the linear learning
rate scheduler in the former with the cosine learning rate scheduler (denoted by cfg-l and –c, respectively). We detail the
cfg-l and cfg-c as follows:
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Figure 1. The accuracy and loss curves of the (a) ResNet-14 and (b) ResNet-26 with different activation models.

1. cfg-l. This training configure applies the basic SGD optimizer with the weight decay of 4 ˆ 10´5 and momentum of 0.9.
Each network is trained with a batch size of 1024 for 300k iterations (i.e., 240 epochs as for the number of images in the
training set of ImageNet). The learning rate starts from 0.5 and decreases to 1´5 (i.e., the minimum learning rate) following
the linear schedule. It follows the common practice to first randomly resize the input images and then crop each input
images to the size of 224ˆ 224. In the test phase, each input images are center cropped to 224ˆ 224. It adopts the standard
data augmentation strategy used in [13, 25, 15, 10].

2. cfg-c. cfg-c has one difference compared to cfg-l: it

D.2. CIFAR-100 Classification

In the experiment on CIFAR-100, we apply the same training and evaluation configure for the CIFAR-ResNet, CIFAR-
MobileNetV2, and CIFAR-ShuffleNetV2. For fair comparisons, we adopt the standard data augmentations used in [13] to
train all the networks with our and compared activation models by a basic SGD optimizer with the weight decay of 5ˆ 10´4

and momentum of 0.9. Each model is trained for 350 epochs with a batch size of 256. The learning rate starts from 0.1 and
decreases to 1´6 following the cosine schedule. All the input images are fixed to the size of 32 ˆ 32.



3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 20 40 60 80 100 120 140 160 180 200 220 240

Lo
ss

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200 220 240

To
p-

1 
A

cc
ur

ac
y

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

(c)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 20 40 60 80 100 120 140 160 180 200 220 240

Lo
ss

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200 220 240

To
p-

1 
A

cc
ur

ac
y

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

(c)

(d)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100 120 140 160 180 200 220 240

Lo
ss

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240

To
p-

1 
A

cc
ur

ac
y 

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100 120 140 160 180 200 220 240

Lo
ss

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240

To
p-

1 
A

cc
ur

ac
y 

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

(d)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100 120 140 160 180 200 220 240

Lo
ss

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240

To
p-

1 
A

cc
ur

ac
y 

Epoch

ReLU

GELU

Swish

Mish

Pserf

SMU-1

SMU

IIEU-B

IIEU-DC

Figure 2. The accuracy and loss curves of the (c) MobileNetV2 0.17ˆ and (d) ShuffleNetV2 0.5ˆ with different activation models.

E. Supplementary Results on ImageNet Classification
E.1. Convergence Analysis

We show the convergence curves of ResNet-14/-26 [8], MobileNetV2 0.17ˆ [20], and ShuffleNetV2 0.5ˆ [17] with our
IIEU-B/-DC and the compared baseline/popular/SoTA activation models. Each of the models is trained by the cfg-1 [25]
from scratch to convergence, respectively.

Figures 1 and 2 depict the convergence trends in Top-1 accuracy (the higher the better) and training loss (the lower
the better) of the ResNet-14, ResNet-26, MobileNetV2 0.17ˆ, and ShuffleNetV2 0.5ˆ equipped with our IIEUs and the
compared activation models, respectively. ReLU networks are the baselines and Pserf (AAAI’22) [2], ACON-C/Mt-ACON
(i.e., Meta-ACON, CVPR’21) [15], and SMU-1/SMU (CVPR’22) [3] are current SoTAs. It is worth noting that our IIEU-B
and IIEU-DC consistently achieve the relatively highest Top-1 accuracies and lowest loss values on different networks over
the varying of epochs.

Tables 1 and 2 reports the number of training epochs to convergence for the networks (i.e., ResNet-14 and ResNet-26,
respectively) of different activation models, where we select the epoch that each corresponding network reaches its lowest
training loss value as the criterion of convergence. Moreover, for detailed comparisons of convergence speed, we also
show the specific epochs that the loss of each network first drops below the specific values (i.e., epochLă3.0

, epochLă2.5
,

and epochLă2.0
are selected, where L denotes “loss value”). Our two major observations are: (1) IIEU-B and IIEU-DC

demonstrate improved convergence properties. That is, IIEU-B and IIEU-DC reach each of the corresponding loss thresholds



Table 1. Convergence analysis with ResNet-14 backbone. We show the results for different activation models with three valid digits. L
denotes “loss value.” Note that each model is trained for 130 epochs using cfg-1 [25] (i.e., 120 main epochs with 10 cool-down epochs).

Metric ReLU LkReLU GELU SiLU Swish ELU Softplus Pserf Mish ACON-C Mt-ACON SMU-1 SMU IIEU-B IIEU-DC

Lmin Ó 2.74 2.72 2.66 2.66 2.65 2.71 2.67 2.66 2.66 2.61 2.43 2.75 2.63 2.21 2.07

epochLmin
119 122 122 120 117 119 122 117 122 121 117 117 119 130 124

epochLă3.0
98 98 93 93 91 98 94 93 93 91 79 99 91 57 44

epochLă2.5 – – – – – – – – – – 112 – – 97 90
epochLă2.0 – – – – – – – – – – – – – – –

Top-1(%)Ò 68.7 68.8 69.6 69.6 69.9 69.1 69.5 69.4 69.4 69.0 70.4 68.5 70.0 73.2 74.8

Table 2. Convergence analysis with ResNet-26 backbone. We show the results for different activation models with three valid digits. L
denotes “loss value.” Note that each model is trained for 130 epochs using cfg-1 [25] (i.e., 120 main epochs with 10 cool-down epochs).

Metric ReLU LkReLU GELU SiLU Swish ELU Softplus Pserf Mish ACON-C Mt-ACON SMU-1 SMU IIEU-B IIEU-DC

Lmin Ó 2.26 2.24 2.18 2.16 2.15 2.20 2.19 2.19 2.17 2.19 2.05 2.31 2.15 1.86 1.80

epochLmin
119 121 119 119 119 119 117 119 120 122 126 119 119 124 126

epochLă3.0
68 65 57 53 53 60 60 57 56 62 46 75 53 23 20

epochLă2.5
102 100 96 96 96 99 99 98 96 99 90 106 95 74 71

epochLă2.0
– – – – – – – – – – – – – 107 104

Top-1(%)Ò 74.9 74.9 75.7 75.8 76.1 75.5 75.7 75.7 75.8 75.6 76.5 75.1 76.1 77.7 78.7

Table 3. Comparisons of FLOPs and parameters of IIEUs with the ReLU baselines on
ResNet backbones. We show the official Top-1 of the ReLU ResNet-50 adopted from [25].
All the models are trained by the cfg-1 [25] (including the ReLU ResNet-50).

Method Metric ResNet-14 [8] ResNet-26 [8] ResNet-50 [8]

ReLU [18]
Params.

10.1M 16.0M 25.6M
IIEU-B (ours) 10.1M 16.0M 25.6M
IIEU-DC (ours) 10.8M 17.5M 28.3M

ReLU [18] 1.5G 2.4G 4.1G
IIEU-B (ours) FLOPs 1.5G 2.4G 4.2G
IIEU-DC (ours) 1.5G 2.4G 4.2G

ReLU [18]
Top-1(%)Ò

68.7 74.9 77.2
IIEU-B (ours) 73.2 77.7 79.7
IIEU-DC (ours) 74.8 78.7 80.3

with relatively fewer training epochs. (2) IIEU-B and IIEU-DC reach clearly lower minimum training loss values (i.e., Lmin)
than other compared SoTA/popular/baseline activation models. This validates the convergence property of IIEU.

E.2. FLOPs & Parameters Added to The ReLU Baselines

Table 3 shows the additional FLOPs and parameters of our IIEU-B and IIEU-DC to the ReLU baselines on ResNet-14,
ResNet-26, and ResNet-50 [8], respectively. Our IIEU-B adds approximately 0.3% parameters and 1.3% FLOPs to the
ReLU counterparts. IIEU-DC shows closed FLOPs to IIEU-B with a relatively slight increase in parameters. Both IIEU-B
and IIEU-DC introduce significant gains in accuracy with relatively low computational overhead.



F. Ablation Study on Normalization Operations of Term-B
We consider Layer Normalization (LayerNorm) [1] as an effective operation for the term-B (i.e., ν) of IIEU-B to perform

flexible channel-dependent scaling and shift to channel statistics with negligible cost (introduced in Formulation, Section 2.3).
Herein, we further investigate the effectiveness (i.e., suitability) of LayerNorm for the learning of term-B by comparing it to
different relevant parametric normalization operations that are commonly applied in neural networks. Specifically, a targeted
ablation study of applying alternative parametric normalization layers in term-B of IIEU-B is conducted on CIFAR-100 [12]
dataset with CIFAR-ResNet-56 backbone [8, 21], where five control groups (cg) are set up: (1) LayerNorm [1] (i.e., the
original setting); (2) Group Normalization (GroupNorm) [23] with groups (denoted by G) 2, 4, and C; (3) Batch Normal-
ization (BatchNorm) [11]; (4) the blank group which applies updatable element-wise affine but removing the normalization
operation (i.e., Z-Scoring); (5) the ReLU [18] baseline.

We report mean ˘ std of the Top-1 accuracy in Table 4, where our five major observations are: (1) the LayerNorm
group (cg-1) achieves the highest Top-1 accuracy of all the compared groups; (2) the GroupNorm group (cg-2) demon-
strates inferior Top-1 accuracy with G “ C while yields close accuracies with G “ 2 and G “ 4; (3) the BatchNorm
group (cg-3) shows relatively low Top-1 accuracy; (4) the blank group (cg-4) improves the ReLU baseline (cg-5) by a large
margin and also clearly outperforms the BatchNorm group; (5) cg-1 to cg-4 all enjoy clear accuracy improvements to the
ReLU baseline. Note that for single vector input (i.e., the case of the term-B in IIEU-B), (1) “GroupNorm of G “ 1” equals
to “LayerNorm;” (2) “GroupNorm of G “ C” equals to “using biases only;” (3) Instance Normalization (InstNorm) is
non-applicable. This validates LayerNorm for the learning of the adaptive shift (i.e. term-B) in IIEU-B.

Table 4. Ablation study on normalization operations of the term-B in IIEU-B.

(1) LayerNorm (2) GroupNorm (3) BatchNorm (4) Blank Group (5) ReLU Baseline
G “ C G “ 4 G “ 2

77.2 ˘ 0.3 76.4 ˘ 0.2 76.9 ˘ 0.2 77.0 ˘ 0.3 75 .4 ˘ 0 .3 76.6 ˘ 0.3 74.4 ˘ 0.3

G. Limitation
Despite the marginal additional parameters and theoretical computational overhead, we find that IIEU-B introduces rela-

tively more throughput decrease than the FLOPs it adds to ReLU [18] baseline. To investigate this phenomenon, we conduct a
comparative evaluation of FLOPs and throughput by comparing IIEU-B to ReLU [18] baseline and popular/SoTA activation
models, including SiLU [7], Meta-ACON [15], Pserf [2], and SMU [3] on ImageNet [6] with ResNet-26 [8], implemented
with 1 ˆ RTX A100 GPU. Note that we follow the common practice to fix the input images to the size of 224 ˆ 224.

Table 5 reports the comparative results of Parameters, FLOPs, Throughput (image / s), and Top-1 accuracy for the corre-
sponding ResNet-26s with IIEU-B and other activation models. Our major observations are: (a) Compared to the marginal
additional FLOPs, IIEU-B shows relatively heavier decreases in throughput to the ReLU baseline and SiLU. (b) IIEU-B
has close throughput to other SoTA activation models (i.e., Meta-ACON, Pserf, and SMU). (c) IIEU-B enjoys significant
improvements in Top-1 accuracy to the baseline and popular/SoTA activation models.

Table 5. Comparisons of FLOPs/throughput of different activation models.

Method FLOPs Throughput Params. Top-1(%)Ò

ReLU [18] 2.4G 4688.4 16.0M 74.9
SiLU [7] 2.4G 4559.5 16.0M 75.8
Mt-ACON [15] 2.4G 3449.1 16.1M 76.5
Pserf [2] 2.4G 3417.8 16.0M 75.7
SMU [3] 2.4G 3444.6 16.0M 76.1
IIEU-B (ours) 2.4G 3630.3 16.0M 77.7



G.1. MS COCO Object Detection

Implementation details. As generic activation models, our IIEUs can be easily extended to other vision tasks. We
evaluate our IIEU-B and IIEU-DC on MS COCO [14] object detection using the popular efficient detector RetinaNet. We
compare our IIEUs to the baseline ReLU [18], the popular Swish [19], and the current SoTAs Meta-ACON [15] and SMU [3].
For fair comparisons, we adopt the default implementation configures (1ˆ schedule) defined by the MMDetection toolbox [5]
and report the standard evaluation metrics, i.e., mAP (the primary metric of averaged precisions), AP50, AP75, APS , APM ,
APL (specific APs at different scales). We employ the ResNet-50 backbones equipped with different activation functions,
each applied with their corresponding ImageNet pre-trained weights. Note that we keep using the deterministic mode for
each of the implementations to ensure reproducibility.

Experimental results. We show the experimental results in Table 6, where our IIEUs enjoy clear gains in accuracy
compared to different baseline/popular/SoTA activation models. This validates the scalability and versatility of IIEU. Note
that we report the official results for Meta-ACON (i.e., Mt-Acon) as our re-implemented results are lower (which is possibly
caused by the different implementation environments).

Table 6. Comparison of different activation models on the COCO object detection [14].

Method Backbone Params. FLOPs mAP (%)Ò AP50(%)Ò AP75(%)Ò APS (%)Ò APM (%)Ò APL(%)Ò

ReLU [18]

ResNet-50 [8]

37.7M 238.9G 36.7 56.0 39.3 21.0 40.2 48.2
Swish [19] 37.7M 238.9G 37.2 56.3 39.9 21.0 41.1 47.8
Mt-ACON [15] 37.9M 238.9G 36.5 55.9 38.9 19.9 40.7 50.6
SMU [3] 37.7M 238.9G 37.5 56.6 40.2 21.5 41.5 48.4
IIEU-B (ours) 37.7M 239.0G 38.2 58.2 40.6 23.2 42.1 49.2
IIEU-DC (ours) 40.4M 239.0G 38.6 59.0 40.8 22.2 42.6 50.7

H. KITTI-Materials Road Scene Material Segmentation
Implementation details. We evaluate our and compared activation models on an emerging task, i.e.KITTI-Materials [4]

RGB road scene material segmentation, using ResNet-50 backbone. To ensure fair comparisons, we adopt the official imple-
mentation protocols applied in [4].

Experimental results. We report the results of our IIEU-B and the compared activation models in Appendix H, where
IIEU-B achieves significant accuracy gains to ReLU baseline and also shows clear improvements on SoTAs Swish, SMU,
and Meta-ACON. It is worth noting that our IIEU shows consistent significant accuracy improvements on various vision
benchmarks to the baselines and SoTAs.

Table 7. Comparison of different activation models on KITTI-Materials [4] RGB road scene
material segmentation.

Method Encoder Decoder Params. mIoU(%)Ò
ReLU [18]

ResNet-50 [8] All-MLP [24]

31.7M 40.2
Swish [19] 31.7M 41.2
Mt-ACON [15] 31.9M 41.7
SMU [3] 31.7M 40.6
IIEU-B (ours) 31.7M 42.4
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