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The document first presents the details of streaming rea-
soning so that readers can better comprehend the OAD
task and the design of the proposed E2E-LOAD. We then
demonstrate additional qualitative and quantitative analyses
of the proposed E2E-LOAD. Additionally, we introduce de-
tails of the datasets and implementations excluded in the
main paper because of limited space.

1. Preliminaries
To help readers better understand the critical challenges

of OAD and the proposed model, we provide a comprehen-
sive analysis of the streaming reasoning and explain the un-
derlying design principles of our proposed solution.
Streaming Reasoning. Unlike offline video tasks that usu-
ally involve videos of fixed duration and can access all
frames at once, streaming video requires processing a se-
quence of frames that arrive one at a time and whose overall
length is unknown. As time goes on, the length of the se-
quence gradually increases, making it challenging to model
the long-term interactions efficiently. In addition, all frames
are the same at adjacent moments in a streaming video ex-
cept for the latest one. Limiting repetitive modeling of these
frames is critical as the model in online scenarios necessi-
tates a real-time response. To summarize, traditional offline
video approaches do not address these pain points well, i.e.,
long video understanding and efficient inference, which in-
spired us to design a streaming video processing framework
for OAD and make end-to-end training feasible.

2. Online Inference
In this section, we present Algorithm 1, which out-

lines the online inference algorithm of E2E-LOAD to aid
the reader in understanding how E2E-LOAD achieves effi-
ciency. To simplify matters, we exclude the long-term his-
tory, which undergoes a similar inference process as SM.
We highlight the Stream Buffer M and Efficient Inference
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Algorithm 1: Online Inference of E2E-LOAD.
Input: Set of video frames V .
Output: Per-frame predictions L.

1 Initialize Stream Buffer M = 0TS×D ;
2 for f in V do
3 X0

TS
= AttnS (f) ;

4 M = Cat(M1:−1,X
0
TS

);
5 X0

[1:TS ] = M ;
6 for l in SM do
7 if EI then
8 Xl+1

TS
= AttnST

(
Xl

TS
,Xl

[1:TS ])
)

;

9 Xl+1
[1:TS ] = Cat

(
Xl+1

[2:TS ],X
l+1
TS

)
;

10 else
11 Xl+1

[1:TS ] = AttnST

(
Xl

[1:TS ],X
l
[1:TS ]

)
;

12 Pf = Classifier(X−1
TS

);
13 Append Pf into L;

14 return L

(EI) technique, which are essential for efficient inference of
the model.

3. Dataset

THUMOS’14 [4] contains 413 untrimmed videos about
sports. Following the previous work [9, 2], we implement
training on 200 videos from the validation set and testing on
213 videos from the test set. These videos cover 21 classes,
including background and 20 action classes. Each video in-
cludes 15.7 actions on average, and 71% of the video frames
are background.
TVSeries [3] annotated 30 realistic actions (e.g., run and
smoke) on 27 episodes from 6 popular TV series, with a
total of 16 hours. The model is trained on 20 videos and
tested on the rest seven videos. This dataset is challenging
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Figure 1: Online Action Detection Performance on Dif-
ferent Portions of Actions in mcAP (%). The model can
make more reliable predictions as more and more content of
the ongoing action is observed. E2E-LOAD (red) outper-
forms all the approaches at the starting and ending stages
and achieves comparable results in the middle stage with
GateHUB.

due to the diversity of viewpoints, actions, and background
frames.
HDD [7] collected 137 human driving sessions by an instru-
mented vehicle. This dataset describes 11 kinds of driving
actions. Each session contains RGB images and non-visual
sensor data. Following the previous settings [8], we take the
RGB data as inputs and use 100 videos for training and 37
videos for testing.

4. Implementations Details

Hyperparameter Settings. For THUMOS’14 and
TVSeries, we follow the previous works [9] by extracting
video frames at 24 FPS and down-sampling the video into
a series of chunks at 4 FPS as inputs. Each chunk contains
τ = 6 consecutive frames. Following TRN [8] for HDD,
we extracted video frames at 3 FPS, and each chunk con-
tains one frame. The E2E-LOAD takes TS = 32 current
chunks as inputs and TL = 32 (training) or 128 (testing)
long-term historical chunks as input. The chunks for long-
term history are sampled at 1 FPS, which covers longer than
the current window. As for the detailed structure of E2E-
LOAD, we set the patch size t×h×w to 3×4×4 for Chunk
Embedding (CE). For the Stream Buffer (SB), we configure
the depth LSB to 5 and set the buffer size T to TS + TL.
We employ 2D convolutional layers with a kernel size of
3×3, and the stride of the convolution is set to 1, except the
1st and 3rd attention layers, where the stride is 2. For the
Short-term Modeling (SM), we configure the depth LSM

to 11. We employ 3D convolutional layers (Convs) with a
kernel size of 1× 3× 3, and the spatial stride of the convo-
lution is set to 1, except after the 8th attention layer, where
it becomes 2. All the temporal strides are consistently as-
signed to 1. For Long-term Compression (LC), we stack

Benchmark Pretraining mAP/mcAP (%)

THUMOS’14 ✔ 72.4
THUMOS’14 ✘ 17.4

TVSeries ✔ 90.3
TVSeries ✘ 65.0

Table 1: Ablation Study for Pre-training on Two Bench-
mark Datasets. The model with pretraining can easily
achieve great performance, while the model without pre-
training suffers from convergence.

LLC = 4 spatial-temporal layers with a temporal stride of
2, 2, 1, 1, respectively. For Long-Short-term Fusion (LSF),
we adopt cross-attention and perform long-short-term fu-
sion at the 5th layer of the SM module.
Training. Following the previous settings [9, 2], we pre-
train the proposed E2E-LOAD on Kinetics-400 [1]. We fol-
low the augmentation techniques of MViTv2 [5] and take
224 × 224 crops as input. Also, we use AdamW [6] with
a weight decay of 5e-4 and a learning rate of 1e-4. The
model is trained with a warm-up learning rate of 1e-6 for
15 epochs and decays according to the cosine function. We
train the E2E-LOAD with a batch size of 16 for 50 epochs.
Evaluation. Following the previous works [9, 8, 2], we
adopt mean Average Precision (mAP) to evaluate THU-
MOS’14 and HDD and mean calibrate average preci-
sion (mcAP) [3] to evaluate TVSeries. We evaluate the
methods on THUMOS’14 and TVSeries at 4 FPS and HDD
at 3 FPS. During inference, we scale the shorter side of the
frame to 256 and take the 224 × 224 center crop as inputs,
while the previous works [9, 2] adopts multi-crops infer-
ence, which will bring extra computational costs.

5. Additional Quantitative Analysis
In this section, we first evaluate the E2E-LOAD’s per-

formance on different action portions on TVSeries. Then
we experiment with the effect of pretraining parameters on
model performance.

5.1. Evaluation for Different Portions of Action

Following the previous works [8, 9, 2], we report perfor-
mance on portions of actions on TVSeries, which means
each action process is equally divided into 10 parts and
the evaluation is conducted on each part (e.g. 0% − 10%)
separately. This evaluation metric reflects the recogni-
tion performance of the model at different action stages,
i.e. starting, middle, and ending stages. It can be ob-
served from Table 1, the proposed E2E-LOAD outperforms
all the approaches at the starting (0% − 10%) and end-
ing (90% − 100%) stages and achieve comparable results
on the middle stages with the state-of-art methods. Based
on this observation, we can conclude that our E2E-LOAD
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Figure 2: Spatial-temporal Attention Visualizations on THUMOS’14. The highlight degree of a region represents the
value of the corresponding attention score. We illustrate the attention distributions of the current frame (red dotted box) on
the historical frames (blue dotted box).
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Figure 3: Action Scores Visualization. We visualize the action scores of two cases (i.e. (a) Long Jump and (b) Hammer
Throw) on THUMOS’14. The orange curves represent the confidence of the current frames at each moment, and the blue bar
represents the period of the ground truth.

can better perceive action boundaries and gain better recog-
nition performance. The detection of the beginning of the
action is critical, especially in the actual scene, as it helps to
detect the relevant actions in time. On the other hand, our
approach can give more reliable predictions as more con-

tent of the ongoing action is observed, while the other ap-
proaches will lead to a slight performance drop at the late
stage of the action. The spatial-temporal attention can well
explore the action clues from the observed history. In sum-
mary, we claim the superiority of the E2E-LOAD based on



the two observations.

5.2. Train from Scratch

We pre-trained our method on Kinetics-400 [1] for a fair
comparison with previous work. We ablate the impact of the
pre-training based on Baseline+LC+LSF+EI. We can ob-
serve from Table 1 the performance drastically drops with-
out pre-training. We believe the video transformer with
huge parameters cannot converge well on small datasets, i.e.
THUMOS’14 and TVSeries.

6. Additional Qualitative Analysis
In this section, we conduct a qualitative analysis of E2E-

LOAD by visualizing the spatial-temporal attention distri-
butions and the classification scores on THUMOS’14 to val-
idate the effectiveness of the proposed E2E-LOAD.

6.1. Visualization of Spatial-temporal Attention

We visualize the distributions of the spatial-temporal at-
tention in Figure 2. Concretely, the incoming frame at-
tends all the spatial-temporal regions and assigns weights
for more discriminative aggregation. Since the [CLS] to-
ken related to the current frame is adopted for classifica-
tion, we plot its attention on each spatial-temporal region.
As shown in Figure 2a and Figure 2b, the highlight degree
of the region reflects the value of its attention score at the
current moment. We can see that the subjects are correlated
at different moments, and the noisy regions are suppressed,
which results in more reliable reasoning as expected.

6.2. Visualization of the Action Scores
In addition to the visualization of the spatial-temporal

attention distribution, we also visualize the action scores
of the current frames in Figure 3. We can see from Fig-
ure 3a the action score curve is steep at the action bound-
aries, which means that our method can detect the start and
the end of actions very quickly in real scenarios. This prop-
erty is consistent with the discussion on the performance of
different action portions in section 5.1. We believe spatial-
temporal attention can effectively distinguish between the
action and the complicated background. Besides, from Fig-
ure 3b, we can observe that our model is still able to give
reliable predictions when short actions occur continuously
and rapidly. These examples demonstrate the effectiveness
of our approach.
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