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1. Implementation Details
Feature Encoder. In this section, we provide more details
about the implementation of CasMTR. As mentioned in
the main paper, we replace partial layers of the feature en-
coder with pre-trained vision transformer layers from Twins-
large [3] for better generalization. Model channels are re-
duced to balance the computation. We list the detailed en-
coder architecture in Tab. 1. In particular, since the highest
feature resolution of Twins is 1/4, we additionally train a
CNN-based ResNet block for 1/2 features. Further, the 1/2
feature is combined to the encoder through the FPN.

Table 1: Model details of feature encoders tackling features
with different resolutions (Res.). ‘LSA+GSA’ in our baseline
indicate locally-grouped self-attention (LSA) and global sub-
sampled attention (GSA) of Twins [3]. Feature channels are
listed in brackets.

Feature Res. Baseline QuadTree

1/2 ResBlock(64)*2 ResBlock(128)*2
1/4 LSA+GSA(128)*2 ResBlock(196)*2
1/8 LSA+GSA(256)*2 ResBlock(256)*2

Coarse and Cascade Matching Module. We almost follow
QuadTree [13] to design our coarse matching module. To
relieve the computation from cascade modules, we reduce
the attention block number in coarse stage from 8 to 6. As
verified in our main paper, our CasMTR can still perform
well with a slightly smaller coarse matching module. For
cascade modules, we use 4 and 3 attention blocks for 1/4 and
1/2 features respectively. For 1/4 features, cascade modules
are interlaced with ‘self-cross-self-cross’ attention blocks,
while cascade modules of 1/2 features are interlaced with
‘cross-self-cross’ attention blocks. Since the self-attention
is costly in high-resolution features, we tend to learn more
cross-view information to make up the self one.
Progressive Training on MegaDepth. CasMTR is trained
progressively from scratch on MegaDepth [8]. To ensure
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that cascade modules can be optimized stably with enough
valid matching pairs, i.e., one ground-truth match should
appear in the local cascade searching space. We first train
CasMTR with only 1

8 resolution for 8 epochs, which can
provide reliable initialization for the subsequent cascade
learning. Based on the 1

8 initialization, CasMTR-4c ( 14 ) is
finetuned for 16 epochs while CasMTR-2c ( 14 ,

1
2 ) converges

faster with 8 epochs. The 8-epoch training of 1
8 CasMTR

costs about 8 hours with batch size 16. The 16-epoch training
of CasMTR-4c costs about 1 day with batch size 8, while
the 8-epoch training of CasMTR-2c costs about 2 days with
batch size 4. All training are based on 4 32GB V100 GPUs.
Incremental Training on ScanNet. We adopt the PMT
enhanced incremental tuning for CasMTR on ScanNet [4]
based on the off-the-shelf QuadTree [13] ScanNet model.
The finetuning of PMT-CasMTR-4c is very efficient with
only 2 epochs, which costs just 16 hours for batch size 32
with 4 48GB A6000 GPUs. Note that it would take about 5
days to re-train a competitive matching model on ScanNet
in [2]. Moreover, our CasMTR-4c outperforms [2].

2. Self-Attention Modules

Linear Attention (Linear) [7] works fast and efficiently for
its quadratic channel based complexity. It is also used as the
standard attention in LoFTR [11].
Locally-grouped Self-Attention (LSA) [3] is simply
learned within non-overlapping local patches while the win-
dow size is set in 7 as [3].
Global Sub-sampled Attention (GSA) [14] downsamples
keys and values to save the computation. LSA and GSA
work complementarily in [3] for both global and local feature
learning. We set the downsample rate of GSA in 4.
Simplified Top-k Attention (Top-k). As the resolution
raising, the QuadTree top-k attention [13] becomes costly
and infeasible. To overcome the heavy computation, here
we adopt a simplified Top-k attention. To get the top-k
keys and values for self-attention, we utilize the property
of two-view matching. First, for each query, we match the
top-1 patch from another image. Then, all matched top-1



patches search for top-k patches of original images through
the coarse attention results, i.e., two-view cycle matching
mentioned in the main paper. Therefore, all queries achieve
their top-k keys and values without a global self-attention
calculation. We set top-64 in this paper.
Large Kernel Attention (LKA) [6] is built with pure convo-
lutions, which comprises depthwise convolution (DW-Conv)
and dilated DW-Conv. Compared with vanilla attention,
LKA also enjoys large receptive fields, but it is less sensitive
on the spatial scale. The effective LKA kernel size is 21.
Patch-based OverLapping Attention (POLA) [15] can
be seen as an extension of LSA. POLA magnifies recep-
tive fields by employing overlapping windows with a larger
window size for keys and values, while the query windows re-
main non-overlapping and have a small kernel size. Besides,
POLA uses relative position encoding to further improve
performance. Kernel sizes for query and key&value are 7
and 21 in POLA respectively.

3. Timing Analysis

We have listed all time and memory costs in the main pa-
per with different input scales. Here we further analyze each
component’s time cost of our CasMTR and QuadTree [13]
with an 832 × 832 image pair from MegaDepth in Tab. 2.
The testing is based on a 32GB V100 GPU. From Tab. 2, the
transformer-based backbone in CasMTR just works slightly
slower (8.75ms) than the CNN-based backbone in QuadTree.
Since we reduce attention blocks in the coarse stage from
8 to 6, CasMTR costs less time for coarse attention. More-
over, our efficient cascade attention takes about 64.95ms and
146.26ms for 1/4 and 1/2 respectively. Compared to the 1/8
coarse attention of QuadTree, our cascade attention mod-
ules can tackle high-resolution features with 4 (1/4) and 16
(1/2) times sequence length. Furthermore, we should clarify
that CasMTR-4c is good enough, which already achieves
significant improvement on various downstream tasks with
acceptable computation. Besides, NMS simplifies the final
matching pairs; and vanilla attention works more efficiently
than the linear one in the patch-wise refinement. Thus our
refinement’s time cost is still comparable to QuadTree’s.
Matching for Large Image Scales. CasMTR would not
suffer from prohibitive running time even working for large-
scale image matching as verified in Tab. 3. The testing is
based on 1536×1536 images on V100 GPU, while QuadTree
can be seen as the baseline. As shown in the table, CasMTR
is still comparable in high-resolution scenes. Note that the
proposed NMS filter could simplify matched pairs to less
but more precise ones, which largely reduces the RANSAC
time and further narrow the gap. Besides, for extremely
high-resolution images, CasMTR-2c is not necessary, while
CasMTR-4c (matching in 1/4 resolution) is good enough,
such as in-Loc results (most images > 1300pix) in Tab. 7.

Table 2: Timing measurements of CasMTR and QuadTree
with 832 × 832 image pairs. Res. means the resolution of
feature maps in this module.

Process Res. QuadTree (ms) CasMTR (ms)

Feature Extraction – 44.37 53.12
Coarse Attention 1/8 125.62 111.38
Coarse Matching 1/8 23.73 29.05

Cascade Attention 1/4 – 64.95
Cascade Matching 1/4 – 8.67

Cascade Attention 1/2 – 146.26
Cascade Matching 1/2 – 18.91

Refinement 1/2 9.14 10.80

Total – 202.86 443.14

Table 3: Inference cost (sec/pair) on 1536×1536 image pairs
compared with QuadTree [13] and CasMTR.

QuadTree CasMTR-4c CasMTR-2c

Matching 1.25 1.49 (19%↑) 1.82 (46%↑)
+RANSAC 1.37 1.54 (12%↑) 1.87 (36%↑)

4. Supplemental Experiments
4.1. Ablations about Cascade Scales

We compare the CasMTR with different cascade scales
on MegaDepth in Tab. 4. The baseline is the first row with
only a coarse stage in 1/8. Note that when we extend our
model with a more coarse initialization (1/16), CasMTR
cannot achieve proper matching results. Although starting
from the 1/16 coarse matching is more efficient, matching in
1/16 features is too challenging and causes inevitable errors
that corrupt subsequent cascade learning.

Table 4: Ablation studies of the cascade scale without post-
processing on MegaDepth.

Coarse Cascade
Pose Estimation AUC ↑
@5◦ @10◦ @20◦

1/8 – 55.77 72.01 83.64
1/8 1/4 56.34 72.11 83.55
1/16 1/8, 1/4 49.26 66.27 79.40
1/8 1/4, 1/2 56.90 72.94 84.24

4.2. Ablations about PMT

We compare the CasMTR with and without the Param-
eter and Memory-efficient Tuning (PMT) on ScanNet in
Tab. 5. While without the PMT, CasMTR-4c directly uti-
lizes frozen FPN features from the off-the-shelf QuadTree
matching model [13]. CasMTR based on PMT outperforms
the one without it. PMT enjoys both parameter and memory



efficiency with only 0.97M trainable parameters, while the
whole FPN has 5.91M trainable ones. Note that we dose not
try to finetune the QuadTree FPN, because it will disturb
the coarse matching initialization; and training the whole
QuadTree model with coarse attention modules is very costly
and unnecessary for our incremental training.

Table 5: Ablations of CasMTR-4c with/without PMT on
ScanNet.

PMT
Pose Estimation AUC ↑
@5◦ @10◦ @20◦

✓ 27.1 47.0 64.4
× 26.2 46.1 63.5

4.3. Ablations about NMS on HPatches

We further compare CasMTR with different NMS ker-
nel sizes on HPatches [1] for the homography estimation
in Tab. 6. First, both CasMTR-4c and CasMTR-2c without
NMS outperform QuadTree. Especially, NMS kernels 5
and 9 perform best for CasMTR-4c and CasMTR-2c respec-
tively. And our methods achieve impressive results with only
400 to 500 averaged matches, which are much fewer than
QuadTree’s. We think that the keypoint location is important
for homography estimation, while the proposed NMS detec-
tion can work properly for it. Note that the setting of NMS
kernel 5 of the relative pose estimation is still competitive
on HPatches, which shows a good generalization of NMS.

Table 6: Ablation studies about NMS kernel size (k) on
HPatches.

Methods NMS
Pose Estimation AUC

matches
@3px @5px @10px

QuadTree – 66.37 76.23 84.97 2749
CasMTR-4c – 67.50 77.10 86.25 11439
CasMTR-4c k=3 67.71 77.45 86.16 923
CasMTR-4c k=5 69.71 78.81 86.96 400
CasMTR-4c k=7 69.70 78.76 87.01 212
CasMTR-2c – 69.06 78.47 86.75 44754
CasMTR-2c k=3 70.11 79.15 87.30 3520
CasMTR-2c k=5 70.35 79.60 87.59 1477
CasMTR-2c k=7 70.89 79.68 87.73 778
CasMTR-2c k=9 71.43 80.20 87.91 507
CasMTR-2c k=11 71.19 79.92 87.69 351

4.4. Qualitative Ablations about NMS Kernel

We show some qualitative samples of CasMTR-4c with
different NMS kernels in Fig. 1. We find that NMS detection
is very effective for two types of image pairs. The first type
is image pairs with large displacements (rows 2,3,4 of Fig. 1).
These pairs are difficult for matching algorithms to achieve
precise matches; and denser predictions usually cause more

Table 7: Visual localization results on InLoc [12]. * means
our implementation of LoFTR; note that results of our im-
plementation are better on DUC1 and worse on DUC2 than
those reported in [11].

Methods
DUC1 DUC2

(0.25m,2◦) / (0.5m,5◦) / (1m,10◦)
HLoc [9]+LoFTR [11]* 49.5/73.7/82.8 51.9/69.5/80.9

HLoc [9]+Baseline 47.5/71.7/83.8 48.1/70.2/79.4
HLoc [9]+CasMTR-4c 51.0/75.3/84.3 51.1/69.5/83.2
HLoc [9]+CasMTR-2c 50.5/74.7/83.8 49.6/70.2/83.2

HLoc [9]+CasMTR-4c-NMS5 53.5/76.8/85.4 51.9/70.2/83.2
HLoc [9]+CasMTR-2c-NMS5 53.0/77.8/86.4 49.6/70.2/82.4

incorrect matches, which discourage the performance. So
detecting local informative keypoints through the NMS is
critical for improvement. On the other hand, image pairs
with very limited displacements are also challenging (row
1 of Fig. 1), which may cause large translation errors. For
these image pairs, NMS detection is also useful to achieve
superior performance with more accurate keypoint matches.

4.5. More Ablation Studies on InLoc

We compare CasMTR-4c and CasMTR-2c with/without
NMS (kernel size 5) on InLoc [12] in Tab. 7. And we did not
further tune the kernel size of NMS on InLoc to ensure the
fairness. CasMTR-2c achieves better results than CasMTR-
4c on DUC1, but it performs worse on DUC2. Taking the
trade-off of efficiency and performance into consideration,
we adopt CasMTR-4c as our final solution in the main paper.

4.6. Matching in Extremely Low Resolutions

Learning the capability for extremely low-resolution
matching is interesting because we could not always
guarantee access to high-quality images. Results are
shown in Tab. 8. We further compare results from Su-
perPoint [5]+SuperGlue [10]. The performances of both
detector-based and detector-free methods are dramatically
degraded in extremely low-resolution matching. However,
our CasMTRs enjoy better robustness. As the resolution
is reduced, the advantages of our algorithm become more
apparent, especially for the CasMTR-2c. Note that for
256×256, the matching is very challenging; and our method
enjoys about 120%, 82%, and 50% improvements on AUC5◦,
AUC10◦, and AUC20◦ compared to QuadTree.

4.7. Insights about CasMTR

In this section we further discuss some additional insights
about the proposed CasMTR. As shown in Fig. 2, matching
in the coarse stage (1/8) usually suffers from some inevitable
deviations. In particular, large displacements of viewpoint
and occlusions break the rule that a local patch in source view
(yellow points in Fig. 2(a)) should be matched to a patch



(a) CasMTR-4c No NMS (b) CasMTR-4c NMS k=3 (c) CasMTR-4c NMS k=5 (d) CasMTR-4c NMS k=7

Figure 1: Qualitative comparisons of CasMTR-4c among different NMS kernels on MegaDepth. Please zoom-in for details.

Table 8: Matching for image pairs with extremely low resolutions.

Methods
640×640 512×512 256×256

AUC5 AUC10 AUC20 AUC5 AUC10 AUC20 AUC5 AUC10 AUC20

QuadTree 49.86 66.85 79.43 44.06 61.35 75.15 10.42 22.04 38.22
SuperGlue 27.55 44.43 61.63 18.46 33.60 51.31 1.64 5.11 13.59

CasMTR-4c 51.11 67.76 80.49 47.07 64.21 77.81 12.70 26.77 44.64
CasMTR-2c 54.98 71.48 83.11 51.36 68.08 80.78 23.38 40.24 57.11

with the same size in target view (red points in Fig. 2(b)).
Rather than trivially searching for the nearest neighbor, our
CasMTR can gradually refine all matched points of the tar-
get view to more exact locations. Thus CasMTR further
improves the pose estimation with lower detailed error.

4.8. More Qualitative Comparisons

More qualitative comparisons for MegaDepth [8] and
ScanNet [4] are shown in Fig. 3 and Fig. 4 respectively.
From Fig. 3, CasMTR-2c outperforms LoFTR [11] and
QuadTree [13], while NMS can further improve the results.
From Fig. 4, we find that denser matches without NMS
are more suitable for ScanNet images with textureless re-
gions and limited resolutions. Besides, note that some sparse
matches are filtered by the NMS (row2 of Fig. 4). Because
our NMS is only based on the densest confidence map (1/4
of ScanNet). Thus keypoints detected by the NMS may
have low-confident scores in the frozen coarse stage, so
these points would be eliminated by the confidence thresh-
old (all stages’ confidence thresholds in our work are fixed
in 0.2). Moreover, qualitative results on HPatches [1] are

shown in Fig. 5. And we also provided some results from
InLoc [12] of the visual localization task in Fig. 6. Note that
the ground truth of InLoc is not provided. So we colorize
the matches with model confidence. It seems that our results
of Fig. 6(c,e) have lower confidence. Because the results of
CasMTR are much denser than LoFTR and baseline. Thus
many low-confident matches are remained to cover the high-
confident ones. Moreover, our NMS can successfully detect
keypoints with locally high confidence, which improves the
performance as in Tab. 7.

5. Limitation

The proposed CasMTR can achieve good performance
in various matching downstream tasks. Although CasMTR-
4c with 1/4 feature maps enjoys impressive enough results,
CasMTR-2c with 1/2 high-resolution features can further
improve the results in most situations. So we think that
learning high-resolution attention modules is still necessary
for image matching. Though we have made lots of efforts
to improve the efficiency, learning in 1/2 features is still



(a) Source view (b) Target view (1/8 match) (c) Target view (1/4 match) (d) Target view (1/2 match)

Figure 2: The effectiveness of each cascade stage from CasMTR. Cascade modules can correctly refine the dense matching
results rather than trivially searching for the nearest neighbor. Please zoom-in for details.

(a) LoFTR (b) QuadTree (c) CasMTR-2c (dense) (d) CasMTR-2c (NMS=5)

Figure 3: Qualitative results compared on MegaDepth [8]. Please zoom-in for details.

very challenging as shown in Tab. 2. Therefore, improv-
ing the efficiency of the high-resolution feature correlation
learning for attention modules should be an interesting fu-

ture work. On the other hand, NMS fails to be generalized
well on texture-less indoor scenes with a frozen coarse stage.
Therefore, we consider it as future work to integrate both



(a) LoFTR (b) QuadTree (c) CasMTR-4c (dense) (d) CasMTR-4c (NMS=3)

Figure 4: Qualitative results compared on ScanNet [4]. Please zoom-in for details.

(a) LoFTR (b) QuadTree (c) CasMTR-4c (d) CasMTR-4c (nms5) (e) CasMTR-2c (f) CasMTR-2c (nms9)
Figure 5: Qualitative results compared on HPatches [1]. All image pairs are resized to meet that the short side is 480. We also
show the corner error of each instance. The matching color threshold is 2-pixel. Please zoom-in for details.

(a) LoFTR (b) Baseline (c) CasMTR-4c (d) CasMTR-4c-NMS5 (e) CasMTR-2c (f) CasMTR-2c-NMS5

Figure 6: Qualitative results compared on InLoc [12]. All image pairs are resized to meet that the short side is 1024. We
colorize the matches with model confidence. Red means certain while blue means uncertain. Please zoom-in for details.

trainable and un-trainable confidence for NMS detection in
challenging scenes.
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