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In this supplementary, we provide additional experimen-
tal details and visualizations that provide further insights
into the main content presented in the paper. Furthermore,
we discuss the limitations of our work and highlight possi-
ble future directions for improvement.

A. Additional Experimental Details and Visu-
alizations

In this section, we provide additional details of our ex-
periments in the paper to further support our main con-
tent. We include visualizations of data distributions, hard-
ware information, and detailed result numbers to help read-
ers better understand our experimental setup. Furthermore,
we present results from extra ablation studies and on addi-
tional datasets to demonstrate the effectiveness and robust-
ness of our proposed KAFAL approach. Moreover, we in-
troduce a visualization that illustrates the mismatch of ac-
tive sampling goals between the global model and the client
models in federated active learning, highlighting the impor-
tance of knowledge-specialized sampling for better perfor-
mance. We also provide a detailed demonstration of the
Knowledge-Specialized KL-Divergence using a toy exam-
ple, to help readers better understand this key component of
our approach.

A.1. Experiment Details

The experiments are conducted with one NVIDIA
GeForce GTX 1080 Ti GPU. Each client is trained for 40
epochs locally. The batch size is 128 and the learning rate
η = 0.1. We run T = 50 communication rounds before ac-
tive sampling and evaluation. β is sampled from Beta(2, 2)
and ν = 0.5. We present the exact result numbers of our
main results on CIFAR10 (Tab. 1) and CIFAR100 (Tab. 2).
To present a complete picture of our KAFAL performance,
we evaluate each client using the test set and show the re-
sults in Fig. 2. The non-IID data distributions used in our
main results on CIFAR10 are show in Fig. 1(a).

Table 1. Detailed results on CIFAR10.
Method 10% 15% 20% 25% 30% 35%
Random

50.60

54.29 59.76 62.85 65.16 66.52
Core-Set 58.98 67.48 68.85 69.04 71.05
Entropy 58.45 65.76 68.61 69.59 71.68
Margin 58.19 63.50 66.75 68.66 71.13
LL4AL 57.48 60.87 63.79 65.31 66.94
QBC 58.45 62.10 65.81 66.49 68.22
BADGE 57.46 63.57 67.39 70.42 71.67
Alfa-Mix 56.75 61.90 64.98 66.57 67.81
KAFAL (ours) 60.88 67.47 70.82 72.94 74.60

Table 2. Detailed results on CIFAR100.
Method 10% 15% 20% 25% 30% 35%
Random

17.67

20.10 24.28 27.85 29.21 30.41
Core-Set 22.78 26.10 28.49 30.11 30.86
Entropy 20.79 23.48 26.41 28.07 30.01
Margin 22.65 25.50 28.56 29.77 30.88
LL4AL 22.18 24.05 27.14 27.99 28.41
QBC 22.41 24.86 27.15 29.95 30.39
BADGE 22.93 26.19 28.61 29.72 31.26
Alfa-Mix 21.14 24.54 27.79 29.15 30.56
KAFAL (ours) 23.63 26.13 28.89 30.79 32.04

A.2. Knowledge Specialization Alternatives

Given that knowledge specialization of KL-Divergence
is achieved via score-level reweighting (as detailed in
Eq. (1)-(3) of the paper) in our KAFAL, an interesting ques-
tion arises: Can other reweighting techniques also enable
knowledge specialization in federated active learning? To
answer this question, we compare our method with two
knowledge specialization alternatives, namely probability-
level specialization and KL-Divergence-level specializa-
tion.

To conduct probability-level specialization, we can
rewrite Eq. (1) as follows:

P i
y(x) =

exp
(
νλi,y · gy(x;ωi)

)
∑

c∈C exp
(
νλi,c · gc(x;ωi)

)
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Figure 1. Illustration of CIFAR10 non-IID data distributions over clients with α = 0.1, α = 0.3, and α = 1. The x-axes represents the
client names. The y-axes represents the class labels. The dot sizes represent the number of data.

Figure 2. Evaluation on each client on CIFAR 10/100 and MNIST using KAFAL.

Figure 3. Results on CIFAR using different knowledge specializa-
tion techniques.

where νi,y =
ni,y∑
c∈C ni,c

is the normalized knowledge
weight. Note that we did not normalize the knowl-
edge weight in our score-level knowledge specialization
(KAFAL) because it can be easily proved that the results
are equivalent with or without normalization. And simi-
larly, Eq. (2) is replaced with:

Qi
y(x) =

exp
(
νλi,y · gy(x;Ω)

)
∑

c∈C exp
(
νλi,c · gc(x;Ω)

) .

This knowledge specialization alternative still involves the
computation of the KL-Divergence as described in Eq. (3).
This knowledge specialization alternative reweights the log-
its during the calculation of the predicted probability, hence
the name.

To conduct KL-Divergence-level specialization, we re-
place Eq. (3) with:

Di(x) =
∑
y∈C

[
νλi,y ·

(
P i
y(x) ln

P i
y(x)

Qi
y(x)

+Qi
y(x) ln

Qi
y(x)

P i
y(x)

)]
.

This knowledge specialization alternative reweights the sum
while calculating KL-Divergence.

In Fig. 3, we present the results of the two alterna-
tives as well as our KAFAL. The experimental results show
that KAFAL outperforms both of the alternative methods.
While probability-level specialization yields an acceptable
outcome, KL-Divergence-level specialization fails to pro-
duce a reasonable result. One possible reason for this differ-
ence is that the probability-level specialization method, like
our KAFAL, uses a moderate level of reweighting to adjust
the results. In contrast, the KL-Divergence-level specializa-
tion method directly reweights the summation in the KL-
Divergence calculation, potentially resulting in a stronger
level of reweighting. Our score-level specialization ap-
proach may outperform probability-level specialization be-
cause reweighting the raw logits may not have a natural in-
terpretation, whereas reweighting normalized results as in
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Figure 4. Results from using α = 0.3 and α = 1 for the non-IID
coefficient on CIFAR10.

our KAFAL can be interpreted as adjusting the likelihood
of the results.

A.3. Different Non-IID Levels

We further explore federated active learning with the
non-IID coefficient α = 0.3 and α = 1 on CIFAR10.
The data distributions are shown in Fig. 1(b) and (c) respec-
tively. We show the experiment results in Fig. 4. A larger
α value provides less non-IID distributions for clients, i.e.,
the distributions across different clients are more similar.
Unsurprisingly, compared to our CIFAR10 with α = 0.1
results, the results are overall better for α = 0.3 and
α = 1. Our KAFAL is still state-of-the-art, but the mar-
gins between the results of KAFAL and the rest methods are
relatively smaller. This experiment demonstrates that our
KAFAL is more competitive with higher levels of non-IID.
It validates that intensifying knowledge-specialized data in
KAFAL can handle the non-IID distributed data in feder-
ated active learning. The margins between Random and

Figure 5. Results on CIFAR10 from using five different values of λ
for the intensification of specialized knowledge in federated active
learning with non-IID data.

other methods become larger with larger α values, possibly
because the mismatch problem in federated active learning
becomes less significant with a lower level of non-IID in
data. And the rest methods can benefit from the actively
sampled data.

A.4. Different Values of λ For Knowledge-
Specialized Intensification

The coefficient λ in eq. (1)(2) controls the knowledge-
specialized level in KSAS. With larger values of λ, the
clients intensify more on their specialized knowledge in ac-
tive sampling. As we stated in the paper, we simply use
λ = 1 in our main experiments. Here we explore more
values of λ on CIFAR10 and show the results in Fig. 5.
For λ of values 1, 2, and 3, the difference is not signifi-
cant. However, for more extreme λ values 0.1 and 10, the
results are clearly poorer. Specifically, λ = 0.1 produces
the worst results of the five. When the λ value approaches
zero, the active sampling purely depends on the disagree-
ment between the clients and the global model. The re-
sults gradually approach the results from using vanilla KL-
Divergence in Subsec. 4.3.1 in the paper. When the λ value
goes to infinity, the active sampling process almost ignores
the less frequent classes and tries to compute the disagree-
ment solely based on the most common class (or classes) of
each client. Therefore, when applying KAFAL, the λ value
should be neither too small nor too large.

A.5. Learning With More Decentralized Clients

In the paper, we explored federated active learning with
N = 10 clients. To better analyze the problem, we run ex-
periments on CIFAR10 with N = 20 and N = 100 while
keeping the rest setup the same. The labelled data amount
still starts with 10% of each local training set, meaning that
with N = 20 the data available for each client is half of that
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Figure 6. Results on CIFAR10 from using (a) N = 20 and (b)
N = 100 clients in federated active learning with non-IID data.

in the previous experiments, and with N = 100 the data
available for each client is only 1

10 of that in the previous
experiments. The results are shown in Fig. 6. Compared
with the previous results from using N = 10 clients, results
for all methods reduce due to the smaller local datasets for
both N = 20 and N = 100. Our KAFAL still outper-
forms the rest methods by a clear margin. This shows the
superiority of our method when more decentralized clients
are involved in federated active learning. The result lines
are more jiggly compared with previous results, the possi-
ble reason is that the fewer labelled data and the T = 50
communication rounds may not be enough for the conver-
gence to be achieved. With N = 100 clients, the margin
is less significant compared to using N = 20, this is possi-
bly due to the extremely small local dataset size. Each local
dataset starts with on average 500 images and adds about
250 images at each active round for N = 100. This also
explains why Entropy and BADGE generate similar results

Figure 7. Results on CIFAR10 from updating 40% of clients per
communication round in federated active learning with non-IID
data.

Pleural thickening Atelectasis Emphysema Nodule Infiltration

Figure 8. Selected images in NIH Chest X-Ray dataset.

compared with Random. The limited training data lead to
poor classification ability and deteriorates the credibility of
the model statistics.

A.6. A Smaller Ratio of Clients to Update per
Round

We used R = 80% in previous experiments. To test how
our KAFAL performs with a smaller ratio of clients updated
in each communication round, we use R = 40% instead and
present the results on CIFAR10 in Fig. 7. All the rest setup
is kept the same. R = 40% means that only 40% of the
clients are updated in each communication round. Surpris-
ingly, our KAFAL performs even better using R = 40%
compared with using R = 80%, while results from the rest
methods all drop. This is possible because our KAFAL
compensates for the knowledge of clients with the global
model using KCFU along with actively sampling data by
intensifying specialized knowledge using KSAS. The two
together enable a faster convergence in global aggregations.
Using R = 40% means each client is trained less compared
to using R = 80% when the communication rounds T is
fixed. The rest methods which still actively sample harder
data that are likely from less frequent classes cannot uti-
lize these data in training with the smaller R value. Al-
though KCFU is also used for other methods for a fair com-
parison, it cannot be fully utilized without the knowledge-
specialized intensification of KSAS.



Figure 9. Results on MNIST in federated active learning with non-
IID data.

A.7. Medical Image Classification

We further conduct experiments in a more realistic sce-
nario of X-ray image classification using NIH Chest X-
Ray dataset [4]. Some examples are shown in Fig. 8. The
task is to categorize thorax diseases using chest X-ray im-
ages. The dataset consists of more than 112k images of
size 1024 × 1024. We follow the official training and test-
ing splits. And we exclude images tagged with ’no find-
ings’. The rest data have 14 for different thorax diseases
as labels. The training split includes 36024 images and the
testing split includes 15735 images. We use ResNet-50 [1]
as the backbone of the clients and the global model. We
still use α = 0.1 as the non-IID coefficient to distribute
the client data. 5 clients are used, and 80% are selected
for the update at each communication round. We start with
10% labels and use 5% of the whole dataset as the budget.
We train for 2 epochs in each communication round with
learning rate η = 0.0005 and run 5 communication rounds
before sampling. The mean AUC score is used to evalu-
ate each method’s performance. The results are presented
in Tab. 3. We compare with four baseline methods (Ran-
dom, Core-Set, Entropy, and Margin) that the dataset can
easily fit in considering the image size and model size. Our
KAFAL still achieves state-of-the-art results on this dataset.

Table 3. mAUC scores on NIH Chest X-Ray dataset.
Method 10% 15% 20%
Random

56.12

60.62 62.77
Core-Set 62.55 63.24
Entropy 63.13 63.80
Margin 60.19 62.81
KAFAL (ours) 63.61 64.48

A.8. Results on MNIST

We also run experiments on MNIST [2]. MNIST is a
10-class image dataset that contains handwritten images of
10 digits. We use the MNIST 2NN proposed by McMahan
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Figure 10. An example of the sampling goal mismatch between the
global model and the clients. The green bounding boxes highlight
class distributions that are clearly different for active sampling re-
sults using the global model (red) and active sampling results using
the client model (blue).

et al. [3] as the clients’ and the global model’s architecture.
We train for 10 epochs each communication round and we
repeat for 10 communication rounds. We split the MNIST
dataset with α = 1. The results are shown in Fig. 9. This
is a fairly simple dataset, so all the results are quite high.
But random is still far behind compared to the other meth-
ods. On this dataset, our KAFAL still outperforms the other
methods, but with a quite small margin.

A.9. Visualizing the Mismatch Problem

In the paper, we mentioned that the main challenge of
federated active learning is the mismatch between the ac-
tive sampling goal of the global model on the server and
that of the asynchronous local clients. To demonstrate this
problem with an experiment, we actively sample with the
global model and the clients respectively and show the class
distributions of the sampled data in Fig. 10. We use the
same sampling method Core-set for both the clients and
the global model for a fair comparison. With the bounding
boxes, we show the differences between the sampling re-
sults. The original data distributions on clients with α = 0.1
are shown in Fig. 1(a). Also, note that this figure only shows
the class distributions. If we further consider specific data
points within each class, the difference in sampled results
will be more significant.

A.10. Demonstration of Knowledge-Specialized
KL-Divergence in a Toy Example with De-
tails

To better visualize how Knowledge-Specialized KL-
Divergence intensifies specialized knowledge compared to
KL-Divergence, we use continuous distributions to simulate
model predictions and compute the divergences (Fig. 11).
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Figure 11. Illustration of how Knowledge-Specialized KL-
Divergence intensifies specialized knowledge compared to stan-
dard KL-Divergence. On the left, we show two distribution
curves. On the right, the blue and orange lines integrate to be KL-
Divergence and the knowledge-specialized KL-Divergence com-
puted from the left distributions. The blue and orange numbers
show the integrated areas of the blue and orange curves in each
image, respectively.

Note that the knowledge weight curves serve as a contin-
uous version of our knowledge weights. In the figure, we
present the distribution curves on the left and the corre-
sponding KL-Divergence and Knowledge-Specialized KL-
Divergence curves on the right, which have been calculated
accordingly. The KL-Divergence curve is formulated as:

p(x) ln
p(x)

q(x)
+ q(x) ln

q(x)

p(x)
,

where p(x) and q(x) are the two distribution functions (pre-
sented on the left of Fig. 11). The KL-Divergence value
is obtained by integrating this function with respect to x.
The Knowledge-Specialized KL-Divergence curve is for-
mulated as:

pw(x) ln
pw(x)

qw(x)
+ qw(x) ln

qw(x)

pw(x)
,

where pw(x) = w(x)·p(x)
Zp

and qw(x) = w(x)·q(x)
Zq

. The
normalization constants Zp =

∫
p(x) · w(x)dx and Zq =∫

q(x) · w(x)dx. The weight curve w(x) is shown
with green dashed lines in the figure. The Knowledge-
Specialized KL-Divergence value is obtained by integrat-
ing this function with respect to x. The right-hand side of
Fig. 11 can be viewed as global-local discrepancies from
two different inputs on the same client model since the KL-
Divergence values are different and the knowledge weights
are the same. On the left-hand side, distributions 1 and
2 simulate the outputs of the client model and the global

model. Notably, while (a) has a smaller KL-Divergence, its
Knowledge-Specialized KL-Divergence is larger, suggest-
ing it is less likely to be sampled than (b) if KL-Divergence
is the sampling criterion. However, using our proposed
Knowledge-Specialized KL-Divergence, (a) is more likely
to be sampled than (b). This difference in sampling re-
sults is due to the knowledge weight, which intensifies the
client’s specialized knowledge while dampening the contri-
bution of unfamiliar knowledge. Importantly, in (a), more
of the model difference arises from specialized knowledge
(as indicated by the peak area of the knowledge weight)
compared to (b).

B. Limitations and Future Work

Our federated active learning paradigm KAFAL includes
KSAS, a novel active sampling method to sample informa-
tive data using intensified discrepancies between the server
and clients based on the specialized knowledge of each
client, and KCFU, a federated update method to deal with
data heterogeneity by compensating weak classes with the
help from the global model. Although the experimental re-
sults demonstrate that KAFAL can perform well on the fed-
erated active learning task, we also want to highlight the
potential drawbacks of this method. In KSAS, the special-
ized knowledge is extracted based on the class distributions
of labelled local data. We may explore other ways to find
a more comprehensive solution to represent the specialized
knowledge, either, possibly not only considering the class
distributions but also taking the training dynamics into ac-
count. In KCFU, the compensation is achieved through
sampling the unlabelled data and then weighting them using
the class distributions. Unfortunately, the data from weak
classes may not be enough even though we include the un-
labelled data. We may utilize the data generation techniques
to generate more weak-class data for better knowledge com-
pensation in the future. In addition to the potential draw-
backs mentioned, another area for future work is to extend
KAFAL to handle the case of long-tailed distribution in the
federated active learning setting. In a long-tailed scenario,
the local data can distribute globally long-tailed with some
classes being rare for all clients. To consider active learning
in such a scenario, additional resampling techniques and an
improved version of knowledge-specialized KL-Divergence
that takes the long-tailed distribution into account need to be
included.
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