
Multi-Modal Continual Test-Time Adaptation for 3D Semantic Segmentation
Supplementary Material

Haozhi Cao1* Yuecong Xu2* Jianfei Yang1† Pengyu Yin1 Shenghai Yuan1 Lihua Xie1

1Nanyang Technological University 2Institute for Infocomm Research, A*STAR, Singapore
{haozhi002, xuyu0014, yang0478, pengyu001, syuan003}@e.ntu.edu.sg elhxie@ntu.edu.sg

In this appendix, we provide more details about our pro-
posed CoMAC. Firstly, we present more details about our
proposed benchmarks, including the generation of synthetic
point clouds of Synthia [10] and class mapping for both
benchmarks. Secondly, we introduce the implementation
details of the baselines we compared with CoMAC. Thirdly,
the implementation details of CoMAC are included and we
provide additional ablation studies to justify our implemen-
tation. Fourthly, we present more visualization compar-
isons between CoMAC and previous SOTA methods to show
that our CoMAC can outperform prior works during the
continual adaptation. Last but not least, we thoroughly
compare our CoMAC with previous works to justify the nov-
elty of our work.

1. Benchmark Details
In Sec. 4.1, we propose two new benchmarks for the

exploration of MM-CTTA, including SemanticKITTI-to-
Synthia (S-to-S) and SemanticKITTI-to-Waymo (S-to-W).
Unlike conventional UDA benchmarks for image semantic
segmentation which usually treat simulation datasets (in this
case, Synthia [10]) as the source domain, we regard Synthia
as the target domain for S-to-S since it contains more var-
ious environmental conditions compared to most real-life
datasets [1, 3, 12], which enables us to construct a more
challenging MM-CTTA benchmark. Although there exist
some real-life datasets recorded under adverse conditions
[16, 11], they usually contain single-modal information and
therefore are not applicable under our settings.
Point cloud generation for Synthia. For S-to-S, we gen-
erate synthetic 3D point clouds from depth images as men-
tioned in Sec. 4.1. More specifically, the 3D point clouds
are extracted by mimicking the point clouds from a 64-line
LiDAR with a vertical field-of-view (FOV) of 30◦. Given
the 2D depth images, we first project the 2D depth pixels
back to the 3D world based on the official intrinsic ma-
trix. Subsequently, we limit the vertical FOV of pixels by

*Equal contributions.
†Corresponding author.

Random OursReal-World

Figure 1: Comparison of the real-world point cloud, ran-
domly sampled depth pixels as point clouds in MMTTA
[12] and ours.

the range [−15◦, 15◦] and simulate the characteristic of Li-
DAR channels by vertically selecting 64 lines of pixels that
evenly divide the FOV. After filtering out the points located
too far (> 100m), the simulated 3D points are then ran-
domly sampled from each line, leading to a total of 20k
points for each frame. As shown in Fig. 1, compared to the
previous work MMTTA [12] that randomly samples pixels
without considering the structural characteristic of points,
our simulated point clouds are more similar to those col-
lected by real-world LiDARs.
Class mapping. To address the label misalignment be-
tween the source-domain and target-domain datasets, we
utilize a similar label mapping strategy as [5] to form an
11-class mapping for each benchmark. Most of the classes
are identical to [5] as shown in Table. 1 and Table. 2. For
SemanticKITTI-to-Synthia, we ignore the class “sky” of
Synthia since it is neither included in SemanticKITTI nor
a common class in 3D segmentation. For SemanticKITTI-
to-Waymo, we introduce the new class “trunk” which is
not included in [5] considering its important role in other
downstream tasks (e.g., localization [4] and map construc-
tion [7, 15]). Both mappings form a segmentation task of
11 classes.

2. Details of pre-trained models and baselines
Here we present implementation details of the pre-

training stage and baseline methods in our work. For all
methods, we conduct a search for learning rates and report
the best results.



S-to-S Class SemanticKITTI classes Synthia classes
car car, moving-car, truck, moving-truck car

bike bicycle, motorcycle, bicyclist, motorcyclist,
moving-bicyclist, moving-motorcyclist bicycle

person person, moving-person pedestrian
road road, lane-marking, parking road, lanemarking
sidewalk sidewalk sidewalk
building building building
nature vegetation, trunk, terrain vegetation
poles pole pole
fence fence fence
traffic-sign traffic-sign traffic-sign
other-objects other-object traffic-light

Table 1: Class mapping of the benchmark SemanticKITTI-to-Synthia.

S-to-W Class SemanticKITTI classes Waymo classes
car car, moving-car, truck, moving-truck car, truck, other-vehicle, bus

bike bicycle, motorcycle, bicyclist, motorcyclist,
moving-bicyclist, moving-motorcyclist bicycle, motorcycle, bicyclist, motorcyclist

person person, moving-person pedestrian
road road, lane-marking, parking road, lane-marker
sidewalk sidewalk sidewalk, curb, walkable
building building building
nature vegetation, terrain vegetation
poles pole pole
trunk trunk tree-trunk
traffic-sign traffic-sign sign
other-objects other-object other-ground, construction-cone, traffic-light

Table 2: Class mapping of the benchmark SemanticKITTI-to-Waymo.

Pre-training on SemanticKITTI. Similar to previous
works [5, 12], we follow the official code of [5] to pre-train
both 2D and 3D networks on SemanticKITTI [1]. Specif-
ically, the optimizers for both networks are Adam [6] with
β = 0.9 and β = 0.999, while the base learning rate is
set to 0.001 with a batch size of 8 for both networks. The
voxel scale and full scale of SCN are set to 20 and 4096,
respectively. The total pre-training epoch is set to 100,000,
where the learning rate shrinks ten-fold at the epochs 8,000
and 9,000. For 2D augmentations, we utilize a bottom
crop of the size (480, 302) followed by a random horizon-
tal flip with a probability of 0.5 as well as color jittering of
(0.4, 0.4, 0.4). On the other hand, 3D augmentations during
the pre-training stage include a noisy rotation of 0.1, a ran-
dom flip of the y-axis with a probability of 0.5, a random
z-rotation within the range [0, 360◦], and a random transla-
tion within the receptive field of SCN. The pre-trained mod-
els are then utilized as the initial state for all methods.
TTA methods. For TTA methods, we compared our Co-
MAC with self-training with pseudo-labels (Pslabel), TENT
[13], and LAME [2]. Specifically, hard thresholding is
introduced in Pslabel to mitigate the side-effect of noisy
pseudo-labels, where pseudo-labels with confidence scores
less than the median score of their predicted class are fil-
tered out. For TENT [13], the implementation follows the

official code. For LAME [2], we implement the variant
with the linear affinity matrix instead since either kNN or
rbf affinity is too expensive to compute for segmentation.
MM-TTA methods. xMUDA [5] with pseudo-labels
(xMUDA-pl) and MMTTA [12] are selected as represen-
tatives of MM-TTA methods. Specifically, xMUDA-pl uti-
lizes the same pseudo-label filtering strategy as Pslabel, and
we utilize the cross-modal consistency learning of xMUDA
in a test-time manner. For MMTTA, we self-implement the
proposed method since it does not come with any official
code. As we mentioned in Sec. 4.2, we additionally intro-
duce an MM-CTTA variant of MMTTA simply by integrat-
ing MMTTA with the model-based stochastical restoration.
Specifically, the restoring rate is set to 0.01 for MMTTA-rs
for both benchmarks.
CTTA methods. In this work, CoTTA [14] and EATA [8]
are the reason works that focus on the CTTA problem. Both
CoTTA and EATA follow the official implementations. For
CoTTA which is also based on test-time augmentations, we
apply the same z-rotation as 3D augmentations for the adap-
tation of the 3D backbone. For EATA, we adopt the first
sequence of each benchmark to train the Fisher regularizer.



5

15

25

35

45

55

m
Io

U
(%

)

CoMAC I-Test (36.6)

CoMAC E-Test (42.7)

TENT-r E-Test (26.8)

(a)

20

25

30

35

40

45

m
Io

U
(%

)

CoMAC (36.6)

CoMAC-BN (32.3)

MMTTA-rs (28.7)

(b)

25

30

35

40

45

50

m
Io

U
(%

)

CoMAC Ir (36.6)

CoMAC lr*10 (35.8)

CoMAC lr/10 (35.7)

(c)

Figure 2: Additional ablation studies to justify the effectiveness of CoMAC. Specifically, Fig. 2a illustrates the performance
comparison between testing immediately (I-Test) and testing at the end of each sequence (E-Test), while Fig. 2b compares
CoMAC with its variant which only update the parameters of batch normalization layers. Fig. 2c presents the robustness of
CoMAC toward different learning rates.

Image EATA MMTTA-rs CoMAC (Ours)GT

: Z
o
o
m

 in
 area 

Figure 3: Visualization comparison between EATA [8], MMTTA-rs [12], and CoMAC (ours). Sequences from the top to the
bottom are from 02-Summer, 04-Fall, 05-Winter, and 04-Sunset, respectively.

3. Implementation Details of CoMAC
As mentioned in Sec. 3.4, the source class-wise centroids

are collected as source knowledge. The source centroids
are computed as the average of normalized features of all
source training samples based on their labels. During the
test-time adaptation, the batch normalization layers utilize
the batch statistics of the current iteration for predictions.
The optimizers of CoMAC for both networks are identical
to the pre-training stage, while the learning rate is set to
1.25E-05. The batch size is set to 1 and the performance
is based on the immediate testing results (I-Test) after the
encounter of the data, strictly following the one-pass proto-
col as in previous works [14, 12]. Here CoMAC updates all

parameters of both networks. All our experiments are con-
ducted on an NVIDIA RTX 3090. Our code is implemented
based on PyTorch [9] of version 1.8.1 with CUDA 11.4.

To justify the effectiveness of CoMAC under different
evaluation protocols and settings, we additionally conduct
experiments where CoMAC is evaluated at the end of each
sequence. Specifically, as shown in Fig. 2a, testing at the
end of each sequence (E-Test) results in a noticeable im-
provement of 6.1% compared to the I-Test version of Co-
MAC. Here we also present an E-Test version of TENT
with auto-reset at the beginning of each sequence (in short,
TENT-r E-Test) as a fair comparison, while both I-Test and
E-Test versions of CoMAC surpass TENT-r E-Test by more



Method Publication Task Designs

TENT [13] ICLR-21

Test-Time Adaptation (TTA): inac-
cessible source data, a stationary
target domain with the input of a
single modality, adaptation con-
ducted during the testing process.

(i) TENT proposes to update the parameters
of batch normalization layers by minimizing
the prediction entropy in the target domain;
(ii) TENT highlights the first TTA protocol
for future exploration.

MMTTA [12] CVPR-22

Multi-Modal Test-Time Adap-
tation (MM-TTA): inaccessible
source data, a stationary target
domain with the input of multiple
modalities, adaptation conducted
during the testing process.

(i) MMTTA generates reliable intra-modal
pseudo labels by combining predictions from
student and teacher models. (ii) The inter-
modal pseudo labels are generated as the
weighted sum of intra-modal predictions
based on student-teacher consistency.

CoTTA [14] CVPR-22

Continual Test-Time Adaptation
(CTTA): inaccessible source data,
a continually changing target do-
main with the input of a single
modality, adaptation conducted
during the testing process.

(i) CoTTA estimates the reliability of teacher
predictions through confidence score, where
hard-selected unreliable predictions are sub-
stituted by augmentation-average for noise
suppression. (ii) Parameters of networks are
stochastically restored to avoid catastrophic
forgetting.

CoMAC (Ours) -

Multi-Modal Continual Test-Time
Adaptation (MM-CTTA): inacces-
sible source data, a continu-
ally changing target domain with
the input of multiple modalities,
adaptation conducted during the
testing process.

(i) CoMAC utilizes iMPA as a centroid-
based adaptive fusion between
augmentation-average and raw predic-
tions to mitigate the potential inductive bias.
(ii) CoMAC attends to reliable modality
through xMPF for cross-modal noise sup-
pression. (iii) The centroids are actively
updated for adaptation while stochastically
revisiting pseudo-source features as source
knowledge to avoid forgetting.

Table 3: Comparison between our CoMAC and previous methods.

than 9.8%, which justifies the effectiveness of CoMAC.
Fig. 2b presents the performance of the CoMAC variant
which only updates the parameters of batch normalization
layers, outperforming MMTTA-rs which also only updates
batch normalization layers by about 3.6%. As for the learn-
ing rate, Fig. 2c justifies the robustness of CoMAC toward
learning rates, falling into a relative margin of 2.4%.

4. Visualization Comparison
To intuitively justify the effectiveness of our CoMAC,

we present more visualization results of our CoMAC in
comparison with previous SOTA methods, including EATA
[8] and MMTTA-rs [12]. Specifically, we present the visu-
alization comparison from different sequences as illustrated
in Fig. 3, where our CoMAC generates more accurate pre-
dictions compared to both EATA and MMTTA-rs.

5. Comparison with Previous (C)TTA and
MM-TTA Methods

In this work, we propose CoMAC to tackle MM-CTTA
for 3D semantic segmentation as an extension of CTTA. To

highlight our novelty, we compare our proposed CoMAC
with previous TTA (TENT [13]), CTTA (CoTTA [14]), and
MM-TTA (MMTTA [12]) methods. Specifically, we list out
their specific tasks and designs as shown in Table. 3.

References
[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-

zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9297–9307,
2019. 1, 2

[2] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca
Bertinetto. Parameter-free online test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8344–8353, 2022. 2

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11621–11631, 2020. 1



[4] Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo,
Philippe Giguere, Jens Behley, and Cyrill Stachniss.
Suma++: Efficient lidar-based semantic slam. In 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4530–4537. IEEE, 2019. 1

[5] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Em-
ilie Wirbel, and Patrick Perez. xmuda: Cross-modal unsu-
pervised domain adaptation for 3d semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, June 2020. 1, 2

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[7] John McCormac, Ankur Handa, Andrew Davison, and Ste-
fan Leutenegger. Semanticfusion: Dense 3d semantic map-
ping with convolutional neural networks. In 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 4628–4635. IEEE, 2017. 1

[8] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient
test-time model adaptation without forgetting. In Inter-
national Conference on Machine Learning, pages 16888–
16905. PMLR, 2022. 2, 3, 4

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
3

[10] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A
large collection of synthetic images for semantic segmenta-
tion of urban scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3234–
3243, 2016. 1

[11] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc:
The adverse conditions dataset with correspondences for se-
mantic driving scene understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10765–10775, 2021. 1

[12] Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel
Schulter, Buyu Liu, Sparsh Garg, In So Kweon, and Kuk-Jin
Yoon. Mm-tta: multi-modal test-time adaptation for 3d se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16928–16937, 2022. 1, 2, 3, 4

[13] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021. 2, 4

[14] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 2, 3, 4

[15] Zejie Wang, Zhen Zhao, Zhao Jin, Zhengping Che, Jian
Tang, Chaomin Shen, and Yaxin Peng. Multi-stage fusion for
multi-class 3d lidar detection. In 2021 IEEE/CVF Interna-

tional Conference on Computer Vision Workshops (ICCVW),
pages 3113–3121, 2021. 1

[16] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1


