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Figure 1: Qualitative comparison of various methods in three representative dynamic scenarios. We use the green bounding
box to mark the corresponding modality as dominant. 1



1. Introduction
In this supplementary material, we first discuss the re-

sults of dynamic fusion in three representative dynamic
scenarios, then explain the justification for dynamic fusion
from a gradient perspective, and finally, we show that the
proposed dynamic fusion model MoE-Fusion has a signif-
icant contribution to downstream tasks through a qualita-
tive evaluation on an object detection task. In addition,
we perform a qualitative analysis of the ablation studies to
strongly confirm the effectiveness of the proposed compo-
nents. Moreover, we show the evaluation results of differ-
ent methods on the LLVIP and M3FD datasets for the ob-
ject detection task. To show the performance advantages
of the proposed method in local regions, we also perform
a quantitative comparison of local regions (foreground and
background) of the fused images on three datasets. The
above supplementary contents fully reveal that the proposed
MoE-Fusion enables sample-adaptive fusion and achieves
the most significant advantages on downstream tasks by re-
lying on the powerful dynamic learning capability. At the
end of the supplemental material, we also provide details
of the two encoders in the proposed MoE-Fusion, details of
the fusion loss for optimizing the proposed fusion network,
and details of the color space conversion. Our Code will be
released for reliably reproducing.

2. Discussion on Dynamic Fusion
2.1. Qualitative Comparison in Complex Scenarios

In complex scenes, different modalities have different
characteristics: the texture of an object should not be dis-
turbed by thermal infrared information when it is clearly
visible in the visible image; the contrast of the object
should not be suppressed by the unfavorable information
of the visible image (smoke, darkness, etc.) when the visi-
ble image is low quality. Therefore, we qualitatively com-
pare different methods on three representative scenes (visi-
ble modality-dominated, infrared modality-dominated, and
visible-infrared modalities co-dominated).

We mark the focused regions using red rectangular
boxes. As shown in Fig. 1, in the visible modality-
dominated scenario, our model dynamically learns effec-
tive textural details in infrared and visible images, avoid-
ing the redundant infrared contrasts affecting the visible
textures. However, the competing methods TarDAL, PI-
AFusion, IFCNN, SwinFuse, YDTR, AUIF, and DIDFuse
failed to dynamically learn the effective information from
two different modalities. In daytime scenes, the competing
method TarDAL suffered from the over-contrast on the ob-
ject, which seriously affected the local textures. As a com-
parison, our fusion results can be adaptively learned with
sufficient texture detail and reliable contrast for people.

In the infrared modality-dominated scenario, our model
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Figure 2: Analysis of dynamic fusion from a gradient per-
spective. We use the Sobel operator to generate the gradient
maps of the visible modality, the infrared modality, and the
fused results, respectively.

dynamically learns the significant contrast of the object,
avoiding the suppression of the thermal information in the
infrared image by the smoke in the visible image. Unfor-
tunately, competing methods DenseFuse, AUIF, DIDFuse,
RFN-Nest, PIAFusion, IFCNN, SwinFuse, and YDTR suf-
fer from varying degrees of suppression of object con-
trast from smoke due to indiscriminately and directly fus-
ing information from multiple modalities. Although the
competing method TarDAL preserves contrast due to en-
hanced learning of objects, black shadows, and noise ap-
pear in background areas such as the sky and tree branches,
which interfere with the overall texture detail. Our approach
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Figure 3: Qualitative comparison of various methods on detection performance.

achieves a sample-adaptive dynamic fusion from local to
global, effectively preserving the high-value information of
different modalities.

In the visible-infrared modalities co-dominated scenario,
our model dynamically preserves the texture details of traf-
fic signs and trucks while effectively learning the con-
trast information of vehicles in the tunnel. The competing
methods TarDAL, YDTR, DenseFuse, AUIF, PIAFusion,
and DIDFuse incorrectly fuse thermal information of traffic
signs and trucks from infrared images into the final results,
leading to serious over-exposure problems. The remaining
methods have similar issues, resulting in fusion results with
varying degrees of distortion on the trucks and traffic signs.
The experimental results demonstrate our effectiveness in
dynamically fusing multi-modal knowledge. This is partic-
ularly valuable for potential downstream applications, such
as image fusion-based object detection.

2.2. Analysis from the Gradient Perspective

In three representative dynamic scenarios, we use the So-
bel operator to extract the gradient information for the vis-
ible modality, the infrared modality, and our fusion results,
respectively. As shown in Fig. 2, we can find that in scenes
dominated by visible modality, the visible modality has the
richest texture details compared to the infrared modality, so
our method tends to mainly learn information from the visi-

ble modality. In scenes dominated by infrared modality, the
infrared modality can also provide rich high-frequency in-
formation because it is not affected by smoke occlusion, so
our method takes the infrared modality as the main learn-
ing reference to make up for the shortcomings of the visible
modality. In scenes where infrared-visible modalities co-
dominate, trucks and traffic signs have rich high-frequency
gradient information in the visible modality, while the gra-
dient information of vehicles in the tunnel needs to be re-
flected in the infrared modality. Our fusion results dynam-
ically learn the complementary information of gradients in
the two modalities, preserving the complete gradient infor-
mation for trucks, traffic signs, vehicles, etc. According to
the analysis of gradient perspective, the amount of effective
information contained in different modalities is promising
to be the basis of model dynamic learning, and in future
work, we will take this as a clue to explore the trustworthy
dynamic fusion of multi-modal images.

2.3. Qualitative Evaluation on the Object Detection

Following [5], we utilize YOLOv5 as the detection
model. As shown in Fig. 3, our model dynamically learns
the knowledge of multi-modal images in a sample-adaptive
manner and achieves the best detection performance in the
two example scenes. Competing methods directly com-
bined the texture details and object contrast of different
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Figure 4: Qualitative analysis of ablation studies for the pro-
posed MoE-Fusion on M3FD dataset.

modalities, ignoring the dynamic changes in reality. For ex-
ample, in the first scenario, the competing method TarDAL
over-learned the thermal information of infrared, making
the detection model incorrectly detect a person as a sheep.
The rest of the competing methods do not make full use
of the valid information of the different modalities, lead-
ing to the problem that the detection model cannot detect
the object or has low detection confidence (below 0.5). In
contrast, our method has the highest detection confidence,
outperforming the unimodal detection results. In the sec-
ond detection scenario, most competing methods also suffer
from infrared modalities that do not adequately preserve the
texture details of the trucks and cars, leading to missed and
error detection problems. Our method dynamically learns
key information of different modalities from local to global
by the sample-adaptive manner to generate fused images
that are more suitable for downstream tasks.

2.4. Qualitative Analysis of Ablation Studies

As shown in Fig. 4, we qualitatively analyze the re-
sults of the ablation studies on the M3FD dataset. We
use grayscale images to show the two scenarios of visi-
ble modality dominance and infrared modality dominance.
In visible modality-dominated scenes, the fusion results of
MoE-Fusion can effectively preserve the rich texture de-
tails of the visible modality and avoid the effects of over-
exposure of the infrared modality on pedestrians. Remov-
ing MoLE from MoE-Fusion clearly shows that the lack of
dynamic learning of multi-modal local information causes
the over-exposure problem of pedestrians. Replacing MoLE
with Att-Local also leads to bad results, which strongly

Table 1: Object detection evaluation on the M3FD dataset.
Red indicates the best. “Motor” is short for Motorcycle.

Methods People Car Bus Motor Lamp Truck mAP

Visible 17.9 70.7 78.1 34.8 33.2 49.9 47.4
Infrared 59.2 64.1 54.5 19.3 18.3 42.7 43.0

DenseFuse [3] 43.4 73.0 76.7 38.7 21.0 45.6 49.7
RFN-Nest [4] 31.8 68.4 74.5 31.1 19.8 41.4 44.5
IFCNN [11] 49.2 74.6 77.4 40.0 21.2 48.3 51.8

PIAFusion [7] 49.6 73.5 73.2 41.0 29.5 51.0 52.9
DIDFuse [12] 44.4 72.7 76.2 34.3 23.3 44.7 49.3

AUIF [13] 46.8 74.4 78.7 40.0 26.1 47.9 52.3
SwinFuse [9] 52.3 75.5 79.3 42.2 29.9 47.1 54.4

YDTR [8] 44.5 74.0 76.2 33.6 22.0 52.3 50.4
TarDAL [5] 59.1 66.7 67.2 30.8 12.5 42.3 46.4

MoE-Fusion 59.7 77.1 80.2 42.7 34.1 56.1 58.3

demonstrates the importance of MoLE to dynamically learn
local information in multi-modal images. In addition, re-
moving MoGE in MoE-Fusion also causes the fusion results
to be disturbed by the infrared information of the object due
to the lack of global dynamic learning, which also proves
the effectiveness of MoGE. In infrared modality-dominated
scenes, the fusion results of MoE-Fusion also preserve the
most significant contrast information, and removing either
MoLE or MoGE leads to a loss of contrast information,
making the model vulnerable to suppression by smoke in
visible images. Replacing MoLE in MoE-Fusion with Att-
Local also weakens the contrast of pedestrians but is bet-
ter than w/o MoLE, which also proves the effectiveness of
the proposed MoLE. With the combination of MoLE and
MoGE, MoE-Fusion can dynamically balance texture de-
tails and contrast from local to global with specialized ex-
perts, which achieves superior fusion performance.

3. Detection Evaluation
According to Table 1, the proposed MoE-Fusion

achieves the most superior performance on the M3FD
dataset, 3.9% ahead of the next best method SwinFuse on
mAP, and more than 10% ahead of the results for the in-
frared/visible modalities. Our method also achieves the
best performance in each category. In particular, our per-
formance on Lamp (34.1%) is substantially ahead of all
competing methods and infrared modalities. These illus-
trate that MoE-Fusion fully exploits the power of multi-
modal fusion by dynamically learning valid information
from multi-modal images. According to Table 2, our MoE-
Fusion outperforms all the competing methods and achieves
the highest mAP. We achieved a 3.7% advantage over the
second-best method PIAFusion. Considering that LLVIP is
a night scene dataset and thus the detection performance of
visible modality is poor, by dynamically fusing infrared and



Table 2: Object detection evaluation on the LLVIP dataset. Red indicates the best. LLVIP only contains the category
“person”, so only mAP is shown.

Methods Visible Infrared DenseFuse [3] RFN-Nest [4] IFCNN [11] PIAFusion [7]

mAP 51.8 85.6 66.2 67.5 85.9 87.3

Methods DIDFuse [12] AUIF [13] SwinFuse [9] YDTR [8] TarDAL [5] MoE-Fusion

mAP 69.9 64.1 53.7 77.4 85.0 91.0

visible images, the upper limit of infrared modality can be
broken and achieved beyond the detection performance of
single modality. The results of these detection evaluations
demonstrate the proposed dynamic image fusion method is
more beneficial for downstream tasks.

4. Local Quantitative Comparisons

To show the advantages of the proposed method in local
regions of fused images, we also perform the local quan-
titative comparisons of the fused images on three datasets.
We use the foreground and background areas to represent
the local regions separately. Firstly, we use the annotated
bounding boxes in the dataset to generate foreground and
background masks. Then, we use these masks to extract
the foreground and background images of the fusion re-
sults separately. In the foreground image, the region except
the foreground objects is masked, and their pixel values are
set to 0. In the background image, all the foreground ob-
jects are masked, and their pixel values are set to 0. On
three datasets, we quantitatively evaluate the foreground
and background images of the different methods separately
to compare the fusion performance of the different methods
in local regions intuitively. The results are reported in Ta-
ble 3 and Table 4, respectively.

4.1. Local Comparison on the M3FD Dataset

According to Table 3, our method achieves the best re-
sults on 7 metrics. In particular, it shows overwhelming ad-
vantages on VIF, MI, and Qabf , which indicates that the fu-
sion results of the proposed method in the local foreground
region are more favorable to the visual perception effect of
human eyes and also contain more valuable information.
The highest EN, SF, SD, and AG also show that our method
effectively preserves the texture details and contrast in the
local foreground region of the multi-modal image. The ex-
perimental results reveal the effectiveness of the proposed
MoE-Fusion to dynamically learn the local information of
multi-modal images in a sample-adaptive manner.

In Table 4, our method achieves the best results on six
metrics, the second best on SCD and the third best on EN.
Our method dynamically learns the effective information of
multi-modal images from local to global and thus can pre-

serve the best high-frequency texture information on the lo-
cal background region, as demonstrated by the results on
SF, SD, and AG. The significant advantages on VIF, MI, and
Qabf also show that the proposed method can retain more
valuable local background information in multi-modal im-
ages while producing fused images that are more suitable
for human visual perception. Such superior performance
is attributed to the proposed dynamic learning framework
from local to global, which achieves state-of-the-art fusion
performance through the sample adaptive approach. The
excellent performance in the local region demonstrates that
MoE-Fusion can balance global and local learning, which
will benefit the performance of downstream tasks.

4.2. Local Comparison on the FLIR Dataset

In Table 3, our method outperforms all the compared
methods on 6 metrics and achieved the third best results
on the remaining 2 metrics, respectively. Specifically, the
highest EN, MI, and SD indicate that the proposed method
preserves the richest information and the highest contrast
on the foreground image. The best results on SCD and
Qabf show that our method can prompt the foreground of
the fused image to learn the most valuable complementary
and edge information from the multi-modal images. In ad-
dition, the highest VIF also demonstrates the advantages of
the foreground images generated by our method on visual
effects. These results effectively demonstrate that the pro-
posed MoE-Fusion has significant advantages in the local
foreground quality of fused images due to the specialized
learning of multi-modal local information.

As shown in Table 4, our method achieves superiority
on 5 metrics, where the highest EN, MI, SF, and AG repre-
sent that our method preserves the richest texture details and
pixel intensity information on the local background region
of fused images. As well as the highest VIF indicates that
our fusion results are also best suited for human vision on
the local background region. The results on Qabf and SCD
also illustrate that our method is competitive in preserving
multi-modal image complementary and edge information.
These results also demonstrate that our fusion results are
significantly superior to other methods on local background
quality due to dynamic specialized learning of multi-modal
local information.



Table 3: Local Quantitative comparison of our MoE-Fusion with 9 state-of-the-art methods for the foreground regions of
fused images. Bold red indicates the best, Bold blue indicates the second best, and Bold cyan indicates the third best.

M3FD Dataset [5]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 0.7273 0.0274 3.5816 0.7874 1.1452 0.5994 0.4655 0.5420
RFN-Nest [4] 0.7469 0.0265 3.5744 0.7865 1.1289 0.5973 0.5111 0.5090
IFCNN [11] 0.7544 0.0349 3.5772 0.7995 1.1732 0.8649 0.8726 0.6492

PIAFusion [7] 0.7650 0.0373 3.5740 0.8208 1.1845 0.9019 1.0557 0.6296
DIDFuse [12] 0.7381 0.0292 3.5809 0.7923 1.1566 0.6575 0.5813 0.5651

AUIF [13] 0.7324 0.0286 3.5821 0.7869 1.1436 0.6415 0.5566 0.5700
SwinFuse [9] 0.7561 0.0361 3.4939 0.8157 1.0825 0.8891 0.5435 0.5860

YDTR [8] 0.7350 0.0332 3.5823 0.8055 1.1845 0.7159 1.0427 0.5840
TarDAL [5] 0.7608 0.0339 3.5768 0.8195 1.1492 0.7683 1.0278 0.5277

MoE-Fusion 0.7688 0.0377 3.5884 0.8844 1.2664 0.9166 0.8671 0.6964

FLIR Dataset [10]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 1.0133 0.0379 4.3260 0.9867 1.1369 0.8175 0.3184 0.5382
RFN-Nest [4] 1.0472 0.0333 4.3269 0.9998 1.0739 0.7711 0.6335 0.5086
IFCNN [11] 1.0570 0.0455 4.3319 1.0143 1.1680 1.1543 0.6894 0.6434

PIAFusion [7] 1.0615 0.0430 4.3311 1.0197 1.1706 1.1900 0.6867 0.6214
DIDFuse [12] 1.0439 0.0505 4.3315 0.9947 1.1637 1.1286 0.6428 0.5602

AUIF [13] 1.0579 0.0301 4.1833 1.0060 0.7889 0.8856 0.4076 0.3687
SwinFuse [9] 1.0617 0.0436 4.3250 1.0141 1.1453 1.1897 0.6930 0.5973

YDTR [8] 1.0301 0.0407 4.3321 1.0065 1.1698 0.9667 0.6484 0.5746
TarDAL [5] 1.0605 0.0381 4.3305 1.0181 1.0580 0.9666 0.5872 0.5428

MoE-Fusion 1.0621 0.0444 4.3322 1.0203 1.1710 1.1548 0.6980 0.6460

LLVIP Dataset [2]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 0.5527 0.0172 2.9714 0.6360 1.0694 0.3460 0.5545 0.4465
RFN-Nest [4] 0.5613 0.0175 2.9028 0.6275 1.0402 0.3286 0.7709 0.3657
IFCNN [11] 0.5711 0.0252 3.0012 0.6471 1.1080 0.5475 0.8209 0.6708

PIAFusion [7] 0.5850 0.0281 2.9529 0.6737 1.1472 0.5818 1.1314 0.6791
DIDFuse [12] 0.5315 0.0205 2.5029 0.6175 0.8252 0.4030 0.1454 0.3497

AUIF [13] 0.5364 0.0199 2.6871 0.6210 0.9058 0.3824 0.1922 0.3306
SwinFuse [9] 0.5072 0.0196 2.4646 0.5753 0.8285 0.3697 0.0557 0.2830

YDTR [8] 0.5544 0.0213 2.9899 0.6470 1.0960 0.4096 0.8406 0.5286
TarDAL [5] 0.5818 0.0283 2.9914 0.6713 1.1403 0.5820 1.1316 0.5957

MoE-Fusion 0.5725 0.0285 3.0074 0.6522 1.1475 0.5824 1.1317 0.6821



Table 4: Local Quantitative comparison of our MoE-Fusion with 9 state-of-the-art methods for the background regions of
fused images. Bold red indicates the best, Bold blue indicates the second best, and Bold cyan indicates the third best.

M3FD Dataset [5]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 6.2466 0.0413 9.3869 3.4312 0.8207 2.9234 1.2845 0.4216
RFN-Nest [4] 6.7317 0.0396 9.7022 3.4181 0.9304 3.0006 1.4032 0.4115
IFCNN [11] 6.4615 0.0611 10.1760 3.4543 0.9117 4.7119 1.3914 0.5948

PIAFusion [7] 6.6101 0.0697 10.6753 4.2777 0.9967 5.1920 1.1991 0.5724
DIDFuse [12] 6.4335 0.0463 9.9337 3.4657 0.8963 3.3748 1.3576 0.4667

AUIF [13] 6.3530 0.0439 9.5516 3.4630 0.8432 3.1355 1.3180 0.4426
SwinFuse [9] 7.0682 0.0674 9.7274 3.6591 1.0340 5.1878 1.4323 0.5267

YDTR [8] 6.3607 0.0541 10.2420 3.6616 0.8902 3.7014 1.4174 0.5120
TarDAL [5] 6.9323 0.0551 10.1222 3.7133 0.9856 3.9125 1.3664 0.4201

MoE-Fusion 6.7860 0.0710 10.6973 4.5515 1.1308 5.2203 1.4284 0.6721

FLIR Dataset [10]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 6.7076 0.0455 10.9301 3.5629 0.7998 2.9991 1.0409 0.3475
RFN-Nest [4] 7.1380 0.0395 10.9758 3.5958 0.8616 2.6326 1.1256 0.3046
IFCNN [11] 6.8659 0.0674 10.8812 3.5080 0.9094 5.3579 1.1797 0.5624

PIAFusion [7] 6.6917 0.0648 11.8801 3.5812 0.9594 4.8385 1.0870 0.4676
DIDFuse [12] 6.9978 0.0680 11.8999 3.1025 0.8305 5.3311 1.4191 0.3856

AUIF [13] 7.0057 0.0468 10.1748 3.5235 0.7845 3.9412 0.6594 0.3244
SwinFuse [9] 7.1181 0.0679 10.9948 3.5513 0.9579 5.2656 1.5214 0.4090

YDTR [8] 6.6353 0.0534 11.0152 3.6865 0.8334 3.2230 1.2674 0.3743
TarDAL [5] 7.2068 0.0640 10.9833 3.7278 0.9042 4.8738 0.8469 0.4323

MoE-Fusion 7.2187 0.0681 11.0548 3.7368 0.9667 5.3910 1.4059 0.5246

LLVIP Dataset [2]
EN SF SD MI VIF AG SCD Qabf

DenseFuse [3] 6.7613 0.0434 9.5516 3.0287 0.7521 3.1273 1.1330 0.3181
RFN-Nest [4] 7.0563 0.0330 9.8548 2.8719 0.7955 2.6958 1.4070 0.2460
IFCNN [11] 7.1119 0.0680 9.9317 3.2737 0.8395 5.1106 1.3752 0.5958

PIAFusion [7] 7.3004 0.0784 9.8792 3.6756 0.9380 5.7825 1.5195 0.5772
DIDFuse [12] 5.9448 0.0527 7.6424 2.8137 0.5465 3.1695 1.0767 0.2340

AUIF [13] 6.1165 0.0617 7.7777 2.7252 0.6080 3.6030 1.1095 0.2725
SwinFuse [9] 5.8519 0.0589 7.5822 2.4033 0.6421 3.4821 1.0832 0.2630

YDTR [8] 6.6232 0.0484 9.1427 3.2533 0.6902 3.0566 1.0642 0.2918
TarDAL [5] 7.2692 0.0679 9.8993 3.7244 0.8328 4.4663 1.3791 0.4398

MoE-Fusion 7.2048 0.0853 9.9427 3.3231 0.9678 5.8198 1.7371 0.5899



4.3. Local Comparison on the LLVIP Dataset

According to Table 3, it can be seen that we achieved sig-
nificant advantages on 6 metrics. Specifically, the highest
SF, AG, and SD illustrate that our fusion results can have the
richest texture detail and the highest contrast information in
the local foreground region. The superior performance on
SCD and Qabf also indicates that our fusion results on the
local foreground region can effectively learn complemen-
tary and edge information from multi-modal images. More-
over, the highest VIF also demonstrates that our fusion re-
sults are more favourable to human observation on the local
foreground region. These results illustrate that the proposed
method can effectively preserve valuable information in the
local foreground region of the multi-modal images, which
benefits from the specialized learning of local information.

As seen in Table 4, we achieved the best on 5 metrics and
the second best on 1 metric. The highest SF, AG, SD, and
SCD indicate that our method preserves the richest texture
details and valuable multi-modal complementary informa-
tion on the local background region of fused images. The
highest VIF also indicates that our fused image is closer to
human vision on the local background region. In addition,
the second best on Qabf also illustrates that our method
is competitive in preserving multi-modal edge information.
These results demonstrate that our method can better mo-
tivate fused images to preserve local background detail in-
formation of multi-modal images through sample-adaptive
dynamic learning.

5. Encoder Architecture

The detailed architecture of the two encoders in the pro-
posed MoE-Fusion is shown in Fig. 5. By convention, we
grayscale the 3-channel visible image IV to obtain a single-
channel image, and then send it and the infrared image II to
the two encoders (EncV and EncI) separately for feature
extraction. These two encoders have the same structure, but
the parameters are not shared. Each encoder contains one
convolutional layer C1 and three densely connected convo-
lutional layers (DC1, DC2, DC3). Referring to [1], the
output of each convolutional layer is fed into each subse-
quent convolutional layer in the densely connected mecha-
nism, which facilitates the preservation of deep features as
much as possible. Finally, we obtain the feature maps of
DC3 layer (xI

enc and xV
enc) and dense feature maps (xI

dense

and xV
dense) from the two encoders, respectively.

6. Fusion Loss

In MoE-Fusion, the fusion loss Lfusion contains the
pixel loss Lpixel, gradient loss Lgrad, and load loss Lload.
We provide more details on their formalization in this sup-
plementary material.
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Figure 5: The architecture of the two encoders in the pro-
posed MoE-Fusion.

6.1. Pixel Loss

We perform the different operations on the foreground
and background of the multi-modal images to facilitate the
fusion network to learn more valuable pixel intensity infor-
mation. Lpixel is defined as,

Lpixel = Lfg
pixel + Lbg

pixel, (1)

where Lfg
pixel represents the pixel loss on the foreground

regions, and Lbg
pixel represents the pixel loss on the back-

ground regions. Their formalizations are as follows,

Lfg
pixel =

1

HW
∥Im ◦ (IF −max (IV , II))∥1 , (2)

Lbg
pixel =

1

HW
∥(1− Im) ◦ (IF −mean (IV , II))∥1 ,

(3)

where H and W represent the height and width of the im-
age, respectively, Im is the foreground mask generated ac-
cording to the ground-truth bounding boxes of the auxiliary
detection network. ∥·∥1 stands for the l1-norm, the operator
◦ denotes the element-wise multiplication, max(·) denotes
the element-wise maximum operation, and mean(·) denotes
the element-wise average operation.

6.2. Gradient Loss

We expect the fused image to preserve the richest texture
details of the images from both modalities. So the gradient
loss Lgrad is formulated as,

Lgrad =
1

HW
∥|∇IF | −max (|∇IV | , |∇II |)∥1 , (4)



where ∇ denotes the Sobel gradient operator, which mea-
sures the texture detail information of an image. |·| stands
for the absolute operation.

6.3. Load Loss

In the Mixture-of-Experts (MoE), the load loss is mainly
used to encourage experts to receive roughly equal num-
bers of training examples. The proposed MoE-Fusion con-
tains MoLE and MoGE. Therefore, the load loss Lload in
our work consists of two parts, namely Llocal

load and Lglobal
load .

The Lload can be calculated as:

Lload = Llocal
load + Lglobal

load . (5)

Following [6], the Llocal
load and Lglobal

load are defined as the
square of the coefficient of variation of the load vector. We
also follow [6] to initialize the weight matrix of the gate
network in each MoE to zero, which keeps the expert load
of MoE in an approximately equal state during the initial
phase.

7. Color Space Conversion of Fused Images
By convention, the output of a fusion network is a single-

channel image. We can better present the fusion results
by supplementing color information to the fused image
through color space conversion. The color information is
mainly preserved in the visible images. We first transfer
the visible image from the RGB color space to the YCbCr
color space and extract the Cb and Cr channels of the visible
image, which contain the color information. Then we con-
catenate the single-channel fused image with the Cb and Cr
channels of the visible image to obtain the 3-channel fused
image. Finally, we convert the 3-channel fused image back
to the RGB color space to obtain the color fusion result.

8. Limitation
In this work, the total number of experts N , as well as

the number of sparsely activated experts K in MoLE and
MoGE are selected empirically. The potential of our model
may not be fully exploited due to the limitation of the data
scale and computational resources. Considering the dy-
namic scenarios in reality, the empirical selection may re-
strict the fusion performance in broader scenarios. There-
fore, how to adaptively select the most suitable numbers of
experts N and sparse activated experts K according to the
scenario is still a challenging problem. We will study to
overcome it in future work.
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