
Supplementary Materials of

Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for

Language-guided HOI detection

The supplementary materials are organized as follows.

In Appendix A, we elaborate on the motivations behind the

development of the RmLR framework. In Appendix B, we

present a more detailed description of our architecture. In

Appendix C, we outline the datasets and evaluation met-

rics used in our experiments. In Appendix D, we provide

an in-depth explanation of the training and inference pro-

cedures. In Appendix E, we discuss additional cases that

demonstrate the interaction loss phenomenon. In Appendix

F, we examine the effects of varying the number of layers

in different modules. In Appendix G, we implement the

Interaction Relation Encoder using a pre-trained human pose

detection model and assess its performance. In Appendix H,

we explore the connection between our RmLR method and

other CLIP-based approaches. In Appendix I, we present

additional detection results for further analysis.

A. Motivations for Our RmLR Framework

An effective HOI detector must concurrently handle

both object detection and interaction relation recognition

tasks. The latter imposes a more substantial requirement

on the model’s capability to comprehend visual features.

Moreover, optimizing the model by solely mapping the

<person, action, object> combinations in HOI datasets

[16][6] to one-hot labels presents challenges due to the flexi-

bility and diversity inherent in these annotations.

In recent years, several studies have investigated the in-

tegration of language prior knowledge from text to guide

the learning of HOI models [66][21][35][57][60]. Incor-

porating linguistic modality information has led to modest

improvements in the performance of existing HOI methods.

However, a majority of these approaches employ a CLIP-

like technique to condense the textual semantic features of

multiple interaction actions into a fixed-length vector [47].

For set prediction problems such as HOI, this compression

strategy imposes limitations on the transfer of cross-modal

knowledge.

Consequently, we propose a novel cross-modal HOI de-

tection framework that enhances visual feature extraction

and cross-modal learning efficiency from two perspectives:

• Firstly, we perform a qualitative and quantitative analy-

sis of the interaction information loss issue in two-stage

visual HOI detectors. We provide supplementary ex-

amples in Appendix E to corroborate our observations.

To tackle this problem, we introduce the Interactive

Relation Encoder (IRE), designed to re-mine visual

features specifically for HO interaction recognition.

• Secondly, considering that HOI prediction involves set

prediction tasks, we introduce sentence- and word-level

alignment strategies to facilitate effective cross-modal

learning and ensure knowledge transfer from linguistic

modalities.

By incorporating these richer multi-modal representations,

we can ultimately achieve improved HOI recognition perfor-

mance.

B. More Implementation Details

The Visual Feature Extractor and Entity Detection module

of our RmLR are based on ResNet [17] and DETR[5], respec-

tively. For the Interactive Relation Encoder and Interaction

Reasoning Module, we use 2 and 1 Transformer encoder

layers, respectively. We follow the two-stage HOI detector

training paradigm[63], where we first pre-train DETR on a

large-scale image dataset and then fine-tune it on HICO-DET

and V-COCO datasets. The weights of DETR remain frozen

during fine-tuning. To initialize the network for HICO-DET,

we use DETR pre-trained on MS COCO [38]. However,

for V-COCO, we exclude some of COCO’s training images

that are contained in the V-COCO test set when pre-training

DETR. We use an FC layer to map the global context fea-

tures to 512-dimensional vectors. Similarly, we use an FC

layer to map the output of IRE’s interactive feature to the

same dimension (512). For the spatial features (entity to-

kens), we concatenate human and object tokens to construct

a 1024-dimensional vector.

We employ the data augmentation and preprocessing tech-

niques proposed in [63]. Specifically, we resize the input

images such that the shorter side is within the range of 480

to 800 pixels and the longer side is limited to 1333 pixels. In
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Figure 6. We provide further examples to elucidate the phenomenon of interaction information loss in two-stage Transformer-based HOI

detectors. Figure 6 showcases instances from the HICO-DET and V-COCO datasets, where we evaluate the output tokens of DETR [5] using

both cosine similarity and Euclidean distance metrics. Our results corroborate earlier observations that the output tokens of the detection

model predominantly pertain to spatial positioning and object categories, rather than the interaction information. This is exemplified by the

fact that individuals situated in the same position exhibit similar features, regardless of the actions they perform.

Table 8. Effect of the #Layers of Different Modules on the V-COCO

test set. “CML-SA” indicates self-attention layers in cross-modal

learning.

#Layer V-COCO

IRM CML-SA AP#1
role AP#2

role

1 1 63.71 69.76

1 2 63.78 69.81

2 1 63.59 69.62

2 2 63.75 69.77

our cross-modal learning approach, we use two self-attention

layers and one cross-attention layer, with a hidden state di-

mension of 1024. We set γ = 0.2 and β = 0.5 for the Focal

loss, following [63]. To determine new hyper-parameters,

we perform cross-validation. We use the Adam optimizer

with an initial learning rate of 10−4 and cosine learning rate

decay strategy. Our model is trained with a batch size of 8

for 20 epochs on four 3080 GPUs.

C. Details of Datasets and Evaluation Metrics

V-COCO [16]. V-COCO is a popular dataset for bench-

marking HOI detection, which is built upon the MS-COCO

dataset. The mean average precision (mAP) is used for eval-

uation. For object occlusion cases, two evaluation scenarios

are considered. Scenario 1 (AP#1
role) considers a strict evalu-

ation criterion that requires the prediction of a null bounding

box with coordinates [0, 0, 0, 0], Scenario 2 (AP#2
role) re-

laxes this condition for such cases by ignoring the predicted

bounding box for evaluation.

HICO-DET [6]. We follow the previous methods [34] to

evaluate on the HICO-DET. The mAP metric is computed in

Default settings and KnownObjects Setting for three

categories: Full (all 600 HOI classes), Rare (138 classes

that have less than 10 training samples), Non-rare (462

classes that have more than 10 training samples). Here the

Default setting represents that the mAP is calculated over

all testing images, while KnownObject Setting measures

the AP of each object solely over the images containing that

object class.

D. Details of Training and Inference

To guarantee the effectiveness and efficiency of our ap-

proach, we systematically design three stages that ensure

robust visual feature extraction and successful cross-modal

knowledge transfer: (i) Re-mining Visual Interaction-

Relevant Features: This stage employs a visual feature ex-

tractor and the IRE module to capture low-level features and

model interactive relations; (ii) Cross-Modal Alignment for

Visual and Textual Representations: This stage devises

sentence- and word-level alignment strategies to establish

correlations between the semantic information of different

modalities; (iii) Reasoning Using Linguistic Knowledge:



Algorithm 1: The training and inference process of

RmLR framework.

Input: Pre-trained object detector, pre-trained text

encoder [52], maximum training epochs N .

Init τ = 0;

Initialize and freeze the weights of FED with

pre-trained object detector weights;

while τ ≤ N do
1. Learning Visual Features

(1) Extract the low-level features X v for input I;

(2) Flatten and project the X v into Zv;

(3) Entity Detection:

(Sv,Bv, Cv) = FED (Zv,Qo);
(4) Exhaustively generate HO pairs and filter

away invalid combinations;

(5) Obtaining pair-wise token features S̃v;

(6) Interactive relation modeling via Transformer

encoder layer: X v
e = Fenc (X

v);
(7) Masked RoI operation is adopted to generate

union region features mv;

(8) Calculate the global context feature gv;

(9) Concatenate the [gv, s̃v,mv] to obtain overall

visual features for HO pairs;

2. Learning Cross-modal Content

(1) Serialize annotation labels as sentence T ;

(2) Tokenize the T into Z l and then map to X l;

(3) Calculate the [CLS] tokens and word

embeddings: (Ecls, E
w) = FTE

(
X l

)
;

(4) Self-attention for the Mv and Ov;

(5) Associate the HO candidates with annotations

to obtain the Mva and Ova;

(6) Cross-alignment for the two modality

representations to obtain M̂va and Ôva;

(7) Calculate the L1 loss Lm and La for IRM and

IRE, respectively;

3. Reasoning Using Knowledge

(1) Reasoning using linguistic knowledge

enhanced visual features and logits;

(2) Calculate the overall loss;

(3) Optimize the learnable weights of RmLR;

end

Output: The optimized weights of RmLR.

This stage utilizes an interaction reasoning module to inte-

grate visual and linguistically-enhanced representations.

In this section, we present a comprehensive pseudo-code

that outlines the training and inference procedures of RmLR

in Algorithm 1. The three stages within this pseudo-code

correspond to the three phases previously discussed. For the

sake of simplicity, we exclude the training process of the

object detection model in the first stage.

E. More Cases about Interaction Information

Loss Phenomenon

In the main paper, we have proposed that two-stage

Transformer-based HOI detectors tend to lose interactive

information. In this section, we present additional evidence

to support this claim. Figure 6 shows more examples, where

we measure the output tokens of DETR [5] not only with co-

sine similarity but also with Euclidean distance. The results

obtained using Euclidean distance also support the conclu-

sion drawn in Figure 1, that the output tokens of the detection

model are only related to position information. These results

further reinforce the claim that the two-stage HOI detectors

suffer from a loss of interactive information.

F. Selection of #Layers of Different Modules

In this section, we present a comprehensive comparison of

the number of layers among various models. To fully unleash

the potential of our method, we also conducted experiments

to compare the performance of different numbers of layers in

the IRM module, as presented in Table 8. Moreover, we also

investigated the effect of varying the number of self-attention

layers in cross-modal learning. Our results demonstrate that

the performance improvement of the model is constrained by

only increasing the number of layers in IRM and CML-SA.

G. Modified IRE module using Human Pose

Information

In Section 3.2 and Table 2, we presented the need for re-

mining interaction-relevant information in two-stage HOI de-

tectors. In our proposed RmLR framework, the IRE module

is a learnable component for interactive relationship model-

ing, gradually acquiring the ability to capture HO interaction

cues under HOI annotation and textual semantic information

supervision. Furthermore, we replace the IRE module with

an explicit human posture recognition model to learn the

union interaction feature of HO candidates. This model is

pre-trained on the CrowPose [30] dataset, and we freeze

its weight for model training and reasoning as an explicit

interaction learning module. We conducted comparative ex-

periments on ResNet-50 and ResNet-101-based RmLR on

two datasets, and the results in Table 9 show that the IRE

module trained with additional datasets can further enhance

the RmLR framework. This finding also confirms the ne-

cessity of re-mining interaction features from a different

perspective.

H. Relationship between RmLR with other

HOI-VLM Methods

As discussed in Section 2.3, current state-of-the-art HOI-

VLM methods can be categorized into two groups: VLP-

based and knowledge distillation-based approaches. VLP
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Figure 7. The HOI task involves predicting multiple interaction categories for one human-object pair, making it a set prediction problem.

Our RmLR approach employs a more refined knowledge transfer operation compared to the previous HOI-VLM method, which ensures the

effectiveness and efficiency of cross-modal learning of HOI detector.
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Figure 8. Visualization of HOI annotations and detection results from UPT [63] and proposed RmLR method. From top to bottom, the

images depict the ground truth annotations, UPT results, and our results, respectively. These comparisons reveal that UPT suffers from false

negative and low confidence results. In contrast, our RmLR method achieves more accurate and confident HOI detection results.

methods typically rely on large-scale Vision-and-Language

datasets for cross-modal pre-training and fusion of text and

image features. In contrast, our proposed method falls under

the knowledge distillation category, which enhances the op-

timization of visual models by transferring knowledge from

pre-trained language models.

Our approach is innovative in two key aspects compared

to existing HOI-VLM methods:

Firstly, most current knowledge distillation-based meth-

ods are somewhat simplistic, such as some CLIP-based HOI

detection methods [57][37]. These methods directly map

annotation text to a fixed-length feature vector and use it

to guide the visual model in learning semantic information.

While they have achieved some success in exploring HOI-

VLM, they still suffer from several drawbacks that need to

be addressed. The HOI task is essentially a set prediction

problem, where an image may contain multiple HO pairs

with various interactions within each pair. Our experimental

results in Section 4.4 and Table 2 demonstrate that simply

compressing the semantic information of these interactions

into a fixed-length sentence representation (i.e., [cls] tokens)

limits the effectiveness of HOI recognition. This approach



Table 9. Performance comparison on the V-COCO test set. The “Extra Dataset" represent the dataset other than HOI datasets.

HICO-DET (Default Setting) V-COCO

Backbone Extra Dataset Full Rare Non-rare AP#1
role AP#2

role

ResNet-50 - 36.93 29.02 39.29 63.78 69.81

ResNet-50 CrowdPose 37.15 30.18 40.23 63.93 69.97

ResNet-101 - 37.41 28.81 39.97 64.17 70.23

ResNet-101 CrowdPose 38.29 31.05 40.37 64.38 70.45

constrains the full utilization and effective transfer of lin-

guistic information. Therefore, implementing cross-modal

alignment and association from text to visual modality is

essential to ensure the successful transfer of linguistic prior

knowledge to the visual model.

Secondly, our method differs from the general VLP ap-

proach because a large vision-and-language dataset is not

required in the training process. The training of the HOI de-

tector can be completed solely through efficient fine-tuning

and knowledge transfer on the HOI dataset. Furthermore,

our RmLR method exhibits exceptionally high training effi-

ciency on HOI datasets. Based on a four 3080 GPU server,

the training process of the ResNet-50-based RmLR model

takes only about 1.5 hours on the V-COCO dataset and about

12 hours on the HICO-DET dataset.

I. Visualization for the HOI Detection

We present visualizations of HOI annotations and detec-

tion results on the HICO-DET [6] test set in Figure 8. The

annotations in (a) demonstrate that an image may contain

multiple HO pairs, and various interactions may occur within

a single HO pair. Therefore, HOI detectors must predict an

HO pair and interaction category set. The detection results

of the UPT and our RmLR methods are shown in (b) and (c),

respectively. These results reveal that the UPT method [63]

is susceptible to false negatives and low confidence results.

Even for some obvious interactions, the UPT method pro-

duces highly fluctuating prediction confidence. In contrast,

our method achieves more accurate results for both HO pair

and interaction category set prediction. These visualizations

reinforce the quantification results presented in Table 1, sug-

gesting that our RmLR framework possesses a significantly

stronger interaction understanding capability.


