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In this supplementary material, we begin by discussing

the broader impact and ethics of our work. We then present

additional ablations in Sec. 1 along with further implemen-

tation details in Sec. 3. After that, we demonstrate in Sec. 2

that Lreproj improves all baselines. Details of the baselines

are presented in Sec. 4. Finally, we show additional qualita-

tive results in Sec. 5. The supplementary video, which is

available at https://astra-vision.github.io/SceneRF/, allows

better evaluation of our method.

Broader impact, Ethics. The promotion of self-

supervised monocular 3D reconstruction contributes to

alleviating the needs of costly data acquisition and labeling

campaigns. On the long term, this also paves the way to

3D algorithms training directly on video sequences – easier

to collect and significantly more diverse than existing

3D datasets. A by-product is that it would contribute to

improving generalization of 3D reconstruction. While

there are no ethical concerns specific to our proposed

method, we note that all methods estimating 3D from 2D

are far less precise than those leveraging depth sensors

(e.g., lidar, depth cameras, stereo, etc.). When it comes to

safety-critical applications, like autonomous driving, we

argue for use of redundant sensors.

1. Additional ablations

Sampling strategy. In Tab. 1 we illustrate the effect

of varying step (ρ) and angle (φ) when sampling novel

depths/views in our scene reconstruction scheme (main pa-

per, Sec. 3.4). As noted in Sec. 4 of the main paper,

the views are sampled up to a distance of 10m on Se-

manticKITTI [2] and 2m on BundleFusion [7]. Increas-

ing the number of synthesized depth maps (i.e., reducing

the step ρ) and varying the angle (φ) generally improves

the IoU score. However, excessively large angle (≥ 20◦ on

SemanticKITTI [2], ≥ 30◦ on BundleFusion [2]) tends to

degrade performance since the synthesized angle diverges

significantly from the available angles during training. This

step (m) rot. (deg.) IoU Prec. Rec.

w/o sampling 11.80 19.91 22.47

0.25 -10 / 0 / +10 13.73 16.98 41.78

0.5 -10 / 0 / +10 13.84 17.28 40.96

1.0 0 13.08 18.56 30.68

1.0 -10 / 0 / +10 13.40 17.27 37.43

1.0 -20 / 0 / +20 13.37 16.73 39.97

1.0 -30 / 0 / +30 13.24 16.40 40.73

2.0 -10 / 0 / +10 13.35 17.41 36.35

(a) SemanticKITTI [2]

step (m) rot. (deg.) IoU Prec. Rec.

w/o sampling 17.33 20.13 55.43

0.1 -20 / 0 / +20 20.34 25.70 49.28

0.2 0 18.76 26.43 39.28

0.2 -10 / 0 / +10 19.94 25.80 46.76

0.2 -20 / 0 / +20 20.16 25.82 47.92

0.2 -30 / 0 / +30 19.98 25.90 46.64

0.3 -20 / 0 / +20 19.84 25.84 46.09

(b) BundleFusion [7]

Table 1: Sampling for reconstruction. Performance of our

reconstruction scheme when varying our sampling steps (ρ)

and angles (φ) (val. set). The highlighted row is our main

setup.

Novel depth synthesis Novel view synthesis

Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑

PixelNeRF 0.6332 2.370 1.786 0.5722 48.01 73.82 84.09 0.421 0.770 19.36

MINE 0.1712 0.085 0.368 0.2214 70.74 93.42 98.46 0.430 0.714 20.21

VisionNerf 0.6384 2.813 1.934 0.5721 59.25 78.62 84.37 0.391 0.790 19.67

SceneRF 0.1581 0.069 0.330 0.1921 75.81 96.80 99.66 0.404 0.801 24.02

Table 2: BundleFusion. Train on 6 scenes and evaluate on

2 scenes.

is particularly pertinent in the context of autonomous driv-

ing setups with front-facing cameras, where there is limited

peripheral supervision.

BundleFusion evaluation on more sequences. For com-

pleteness, we retrain on 6 sequences (apt0, apt1, apt2, of-

fice1, office2, office3) with 2 validation sequences of un-

seen rooms (copyroom, office0) to show generalization.

The results are shown in Tab. 2 and show that SceneRF still

surpasses all baselines on all 10 metrics except LPIPS. This

is on par with Tab. 1 of the main paper.

2. Effect of Lreproj on NeRF baselines

In Tab. 3, we apply the reprojection loss Lreproj

(Sec. 3.1.1 main paper) to all NeRF baselines, showing that

https://astra-vision.github.io/SceneRF
https://astra-vision.github.io/SceneRF/


Novel depth synthesis Novel view synthesis

Method Lreproj Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1↑ δ2↑ δ3↑ LPIPS↓ SSIM↑ PSNR↑

PixelNeRF [16]
✗ 0.2364 2.080 6.449 0.3354 65.81 85.43 92.90 0.489 0.466 15.80

✓ 0.1986 1.544 5.963 0.3093 70.30 87.19 93.82 0.488 0.481 16.11

MINE [8]
✗ 0.2248 1.787 6.343 0.3283 65.87 85.52 93.30 0.448 0.496 16.03

✓ 0.2003 1.599 6.023 0.3070 70.22 86.98 93.89 0.445 0.497 15.96

VisionNerf [10]
✗ 0.2054 1.490 5.841 0.3073 69.11 88.28 94.37 0.468 0.483 16.49

✓ 0.1749 1.380 5.643 0.2841 75.77 89.25 94.58 0.432 0.488 16.39

Table 3: Reprojection loss Lreproj on other baselines. We apply our reprojection loss to other NeRF baselines, showing it

boosts performance for all.

it improves consistently all of them. Again, we argue this

is because Lreproj enforces better density (σ) in the volume

rendering – which has a complementary effect with Lrgb.

3. Additional implementation details

3.1. Probabilistic ray sampling (PrSamp) details

For clarity, in Algorithm 1, we detail the pseudocode of

the Probabilistic Ray Sampling (Sec. 3.2, main paper).

3.2. 3D reconstruction details

Fusing TSDFs. From Sec. 3.4 of the main paper, we fuse

individual TSDFs by taking the minimum of their absolute

values (‘min’) instead of the more standard average of all

TSDFs (‘avg’). We justify this choice, in Tab. 4 showing

that using ‘min’ leads to +2.77 IoU. We argue that some

surfaces may be better estimated from specific camera loca-

tions. Averaging all (‘avg’) has a smoothing effect on V (·)
which subsequently reduces accuracy.

Occupancy grid. To convert the scene TSDF volume

V (·) (cf. Sec. 3.4, main paper) into an occupancy grid,

we first study the depth estimation error. Comparing 100

frames in Fig. 1 with sparse Lidar ground truth, we note

a linear relation between error estimation and ground truth

depth. This motivated us to model the occupancy grid O(·)
as an adaptive depth threshold:

O(v) = 1 ⇐⇒ V(v) < min(0.25dv, 4.0) , (1)

with v a voxel in V, and dv its distance to the camera ori-

gin. We arbitrarily cap the threshold to 4 meters to avoid

considering all far voxels as occupied.

3.3. Network architecture

For 2D features extraction, the encoder is similar to [5],

which is based on a pre-trained EfficientNetB7 [15]. The

spherical decoder has 5 layers, each of which doubles the

input resolution and halves the feature dimension. To make

up for the large amount of empty space that comes with in-

creasing the field of view, we augment the receptive field by

putting three ResNet blocks with dilation sizes of 1, 2, and

Figure 1: Absolute depth error w.r.t. ground-truth

depth. We compute error from 100 randomly selected

scenes in the training set, and observe a linear relation be-

tween error and distance.

3 in each layer. The skip connections (described in Sec. 3.3

main paper) are used between the encoder and decoder at

the corresponding scale.

3.4. BundleFusion – 3D groundtruth

We seek to generate for each input frame the 3D ground-

truth occupancy grid. To do this, we use the camera param-

eters and define a volume of (4.8m, 4.8m, 3.84m) in front of

the camera. The origin is set at (-2.4m, -2.4m, 0m) such that

the camera is in the middle of one side of the volume and

pointing inward. We then combine the depth maps to create

the TSDF volume with a voxel size of 0.04m, resulting in

a TSDF grid of size (120, 120, 96). Finally, the occupancy

grid is obtained by thresholding the TSDF grid.

4. Baselines details

We re-train all baseline networks, including the novel

depth/view synthesis (Sec. 4.1) and scene reconstruction

baselines (Sec. 4.2). We provide the reader with additional

details about our baselines.

4.1. Novel depth/views baselines

We train our method and baselines using AdamW [12]

optimizer on 4 Tesla V100 32g with learning rate of 1e-5 for

50 epochs. For each baseline, we rely on the recommended

learning rate scheduler and number of positional encoding



Algorithm 1: Probabilistic Ray Sampling.

Input : Ray r.

Param: Number of Gaussians k, and m number of points per Gaussian.

Near and far bounds: tn = 0.2m and tf = 100m.

Learning rate lr of gradient descend (GD).

Result: Points sampled P
1 d← dir(r)

// Uniform sampling (•)
2 I ← {uniform-samp(num=k, start=tn, end=tf)× d} ▷ Points sampling between near and far bounds

// (1) Predicts Gaussians (G) with MLP g(·)

3 G ← g
({

(x,W(ψ(x))) | ∀x ∈ I
})

// (2) Sample m points from Gaussians (■)

4 P ← ∅
5 for i← 1 to k do

6 P ← P ∪ gauss-sampling(Gi,m)
7 end

// Sample 32 points uniformly (▲)

8 P ← P ∪ {uniform-samp(num=32, start=tn, end=tf)× d}
// (3)-(4) NeRF inference to compute densities

9 σ ← {f(γ(x),d;W(ψ(x)))σ | ∀x ∈ P} ▷ Densities from f(·) inferences Eq.(1), main paper

// (5) PrSOM point-Gaussian assigment

10 α← {alpha-value(s, . . . ) | ∀s ∈ σ} ▷ Compute alpha values from [13] p3

11 X ← {PrSOM(G,P, α)} ▷ Applies PrSOM [1]

// (6) Compute new Gaussians from assigned points and update g(·)
12 G′ ← {(µ(Xi), std(Xi)) | ∀i ∈ N, 1 <= i <= k}

13 Lgauss ←
1

k

∑

k

i
Kullback-Leibler(Gi||G′i)

14 Lsurface ← mini(||µ(G′i)− D̂(r)||1)
15 Ltotal ← Lgauss + Lsurface

16 g ← GDlr(g,∇Ltotal) ▷ Applies gradient-descent to update g(·)

Method IoU Prec. Rec.

SceneRF (avg) 11.07 11.81 63.98

SceneRF (min) 13.84 17.28 40.96

Table 4: TSDF fusion strategy comparison on Se-

manticKITTI [2]. We show that our way of extracting the

TSDF described in section 3.4 is better than the traditional

way of using the weighted average of TSDFs.

frequencies. For our network, since we build on Pixel-

NeRF [16], we use its scheduler and number of frequencies.

The ray batch size was 1200 for Semantic KITTI [2] and

2048 for BundleFusion [7]. The training time was around

5 days per network. Additional information about the base-

lines implementations is provided below.

PixelNeRF [16]. We use the official implementation1.

Following the official sampling strategy, we sample 96

points per ray, consisting of 64 coarse points, which are

used to sample 16 fine points hierarchically and 16 points

around the estimated depth.

MINE [8]. We use the official implementation2. To bal-

ance memory cost, we use the 32 planes version.

1https://github.com/sxyu/pixel-nerf
2https://github.com/vincentfung13/MINE

VisionNeRF [10]. We use the official implementation3.

To balance memory cost again, we sample 96 points (32

coarse, 64 fine) which is more than for SceneRF.

4.2. Scene reconstruction baselines

Only MonoScene4 is a monocular baseline. To better

compare with the literature, we follow the recommenda-

tion of MonoScene authors [5] and compare against the rgb

versions of popular semantic scene completion baselines:

LMSCNet5 [14], 3DSketch6 [6] and AICNet7 [9]. More

in depth, to convert the sequence of depths into 3D label

to train the scene reconstruction baselines, we use the Ad-

abin [3] model to predict the depth for each image and fuse

all depths into a single TSDF volume, then turned into an

occupancy grid with the same reconstruction scheme as for

SceneRF (see Sec. 3.2). For all, the mesh is obtained with

the traditional marching cubes [11].

5. Additional qualitative results

Voxelized reconstructions on SemanticKITTI [2].

Fig. 2 shows the voxelized reconstructions comparing our

3https://github.com/ken2576/vision-nerf
4https://github.com/cv-rits/MonoScene
5https://github.com/cv-rits/LMSCNet
6https://github.com/charlesCXK/TorchSSC
7https://github.com/waterljwant/SSC

https://github.com/sxyu/pixel-nerf
https://github.com/vincentfung13/MINE
https://github.com/ken2576/vision-nerf
https://github.com/cv-rits/MonoScene
https://github.com/cv-rits/LMSCNet
https://github.com/charlesCXK/TorchSSC
https://github.com/waterljwant/SSC


self-supervised SceneRF with the Depth-supervised version

of MonoScene [5] which relies on AdaBins [3] trained

with Lidar ground truth. Notably, despite less supervision

the predictions of SceneRF align closely with those of

MonoScene in terms of overall scene architecture, object

shapes, and positioning. Intriguingly, SceneRF infers

the sky more accurately, attributed to the 3D consistency

gained from optimizing the radiance volume. On the other

hand, MonoScene struggles to predict sky arguably because

AdaBins trains with lidar depth which cannot capture the

sky. Nevertheless, occlusions artefacts are visible in both

due to monocular supervision.

SemanticKITTI [2]. We show additional qualitative re-

sults in Fig. 3 and Fig. 4. Overall, our method predicts

smoother and finer depth maps, especially at far, which

leads to a better-structured 3D scene with fewer artifacts

than the baselines. When synthesizing RGB images, our ap-

proach achieves comparable results to other baseline meth-

ods.

BundleFusion [7]. We present further qualitative results

in Fig. 5, which demonstrates that SceneRF produces more

accurate depth maps than other methods, especially for

views that significantly differ from the input view (as ob-

served in columns “+0.2m, -20◦” and “+0.4m, +20◦”).

Moreover, SceneRF is the only method capable of inferring

scenery that is not visible in the input field-of-view, which

is particularly evident in the first and third rows.

Generalization results on nuScenes [4]. Using the

SceneRF model trained on Semantic KITTI [2], we perform

inference on unseen nuScenes images. Additional qualita-

tive results obtained are presented in Fig. 6. Despite the

vastly different setup between the two datasets, such as dif-

ferences in camera setups and locations (Germany versus

USA), SceneRF is able to predict a reasonable scene struc-

ture that included e.g., road, building, and vehicles.
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Figure 3: Additional qualitative results on SemanticKITTI [2] (val.).
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Figure 4: Additional qualitative results on SemanticKITTI [2] (val.).
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Figure 5: Additional qualitative results on BundleFusion [7] (val.).
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Figure 6: Additional generalization results on nuScenes [4]. The model is trained only on SemanticKITTI [2].


