
A. Gradient alignment and sparsity in SiM4C
A.1. Gradient alignment in SiM4C

Nichol et al. [38] analyzed the meta-gradients from the
MAML objective [13] after k inner optimization steps.
Following the notation introduced in Section 2.2, let
Linn(✓i�1) and Lout(✓k) be the loss at the ith inner step,
and the outer loss, respectively. Then, they showed that via
a second-order Taylor expansion, the meta-gradients can be
approximated by the expression:

@LMAML(✓)

@✓
⇡ @Lout(✓k)

@✓k

�⌘
kX

i=0

@

@✓i

✓
@Linn(✓i)

@✓i
· @L

out(✓k)

@✓k

◆

+
@

@✓k

✓
@Linn(✓i)

@✓i
· @L

out(✓k)

@✓k

◆
.

(8)

The last two terms in Equation 8 (green) correspond to the
gradient of the dot product between the gradient of each
inner step and the outer gradient. Hence, optimizing the
MAML loss approximately corresponds to maximizing gra-
dient alignment between the gradient of each inner step and
the gradient of the outer loss. Intuitively, if two losses have
gradients with a positive dot product, taking a small enough
step in the direction of either of their gradients will locally
minimize them both. Thus, gradient alignment between
different objectives induces transfer, incentivizing feature
reuse when computing losses with different inputs if and
only if the underlying gradients point in similar directions
[35, 41]. In the context of SiM4C, during meta pre-training,
@Linn(✓)

@✓
is the gradient of a random task’s loss using a

single random data point while
@Lout(✓0)

@✓0
is the gradient of

the continual objective from an i.i.d. batch of task samples
(past data) and unseen current task samples (future data).
Hence, optimizing gradient alignment in SiM4C induces f✓
to structure its latent representations such that optimizing
from an arbitrary sample is likely to not interfere with past
learning and generalize to unseen task samples, given the
observed distribution of tasks.

Nichol et al. [38] showed that the second-order Taylor
approximation also holds with first-order approximations to
the meta-gradient (e.g., FOMAML) with some caveats. In
particular, it only holds in expectation over the meta-loss,
and the magnitude of the gradient alignment term is strictly
lower than the gradient alignment term in Equation 8. We
note that both implementations of OML and ANML rely
on a FOMAML approximation, given their large k, and
use a meta-batch size of one3. Hence, the aforementioned
caveats might theoretically hinder their effectiveness for

3In each iteration a single task is used to calculate the meta-gradient

Figure 4. Cosine similarity measured (A) within and (B) across
different tasks collected throughout performing continual learning
on meta pre-trained models using 600 sampled tasks either from
the meta-training or the unseen meta-testing set. The experiments
are conducted on the online continual learning Omniglot bench-
mark with meta pre-training, as described in Section 3.1.

maximizing gradient alignment. Moreover, while SiM4C’s
outer gradient is calculated mostly from unseen samples,
ANML’s outer loss only considers seen samples from the
current task and the remember set, hence, potentially lead-
ing to poor gradient alignment with respect to unseen data.
This intuition appears to be consistent with our empirical
analysis from Section 4, potentially providing a comple-
mentary explanation for ANML’s lower test generalization
and the occurrence of meta-overfitting.

Recording gradient alignment. We further analyze if
the aforementioned considerations and hypotheses empir-
ically hold. In particular, we collect measures of align-
ment and transfer using the cosine similarity between dif-
ferent gradients at meta-testing. We compare ANML and
SiM4C, evaluating both within task alignment and across
tasks alignment. These are computed as the cosine of the
angle between different gradients with respect to new sam-
ples within the same meta-testing task or between the gra-
dients of each new sample and a batch of test data from all
meta-testing tasks. We show our results in Figure 4, where
we illustrate the mean alignments when deploying the meta
pre-trained classifier on either the meta-testing tasks or the
same tasks observed during meta pre-training. On the meta-
testing classes, SiM4C achieves comparatively higher co-
sine similarity as compared to ANML, both within the same
task and across tasks. In contrast, our recordings from per-
forming continual learning reusing the meta pre-training
tasks, show the two algorithms achieve comparable cosine
similarities. These results appear to closely reflect the above
considerations motivating SiM4C’s implementation, empir-
ically confirming that multiple inner steps are not needed to
achieve backward and forward transfer. Moreover, they also



validate our hypothesis that the emphasis on unseen data in
SiM4C’s meta-objective allows gradient alignment to occur
for tasks beyond the meta-training set, and provide further
evidence for the meta-overfitting of prior methods.

A.2. Induced representation sparsity
As argued by Javed and White [23], following the intu-

ition proposed by French [14], representation sparsity ap-
pears to be a useful heuristic to attain representations that
avoid catastrophic forgetting. As an illustrative example, if
different data points xi, xj from unrelated tasks do not share
any of their final activations zi, zj , then the gradients with
respect to the final weight matrix W will not interfere with
one another. This occurs since the gradient corresponds to
a matrix product between a column and row vector:

@L(f✓(x))

@W
= zT

@L(f✓(x))

@f✓(x)
. (9)

Thus,
@L(f✓(x))

@W
could have non-zero rows only where z

has non-zero entries. It hs been empirically shown that just
inducing sparsity as a heuristic auxiliary objective appears
to incur in dead neurons, where certain parts of the rep-
resentations are never activated, resulting in a loss of ca-
pacity. Consistently with the empirical findings of prior
meta pre-trained continual learning work [4, 23], we hy-
pothesize that also the representations of SiM4C after meta
pre-training will be sparse as an emergent side effect of im-
proved knowledge-retention.

Method Active neurons Dead neurons
SR-NN [34] 15% 0.7%
OML [23] 3.8% 0%
ANML [4] 5.9% 0%
SiM4C 10.7% 0%

Table 2. Percentages of active neurons (magnitude above 1% the
mean activation) and dead neurons (never active) of the final rep-
resentations computed with the meta-testing samples for different
meta pre-training techniques.

Hence, we compare the sparsity levels achieved by
OML, ANML, SiM4C, and an alternative method consid-
ered by Javed and White [23] using the set-KL method as a
way of achieving sparse representations (SR-NN) [34]. Fol-
lowing Beaulieu et al. [4], we consider an activation active
if its magnitude is greater than 1% of the average activa-
tion in the representation. We directly report all baseline
sparsity results obtained in [4, 23]. As shown in Table 2,
SiM4C’s representations are inherently sparse with, on av-
erage, only 10.7% neurons active for any given data point.
Moreover, while its representations are considerably more

sparse than the SR-NN baseline, SiM4C does not experi-
ence any dead neurons, validating that it does not waste
representational capacity as opposed to methods that opti-
mize directly for sparsity heuristics. Our results further re-
inforce Javed and White [23]’s hypothesis that sparsity is an
emergent property of effective representations for continual
learning. However, we note that SiM4C’s representations
are comparatively less sparse than OML and ANML. Yet,
this does not come at either performance or gradient align-
ment costs, as shown in Section 4 and Appendix A.1 above.
We believe this to be a consequence of SiM4C’s objec-
tive incentivizing not only to minimize forgetting but also
to maximize positive transfer to large amounts of unseen
‘future’ data. In fact, while sparse representations avoid
interference, they also prevent potentially positive transfer
between learning different samples, as the gradients from
all inactive features will tend to zero. Therefore, we argue
that excessive sparsity is likely detrimental and a symptom
of the meta-learned model being over-conservative about
stored information, leading to lower transfer and worse gen-
eralization, as shown by our results.

In Figure 5, we also provide some visualizations of
SiM4C’s 2304-dimensional normalized final activations
from random meta-testing samples, reshaped into 32 ⇥ 72
heatmaps. We compare them with the average normalized
activation across all samples. The sampled visualizations
exemplify SiM4C’s sparsity, while the uniformity in the av-
erage normalized activations reflects SiM4C’s lack of dead
neurons and its efficient use of representational capacity
across different tasks.

B. Implementation details
B.1. SiM4C with meta pre-training

Our implementation of SiM4C for the meta pre-trained
continual learning problem setting follows the model, pre-
processing, and training paradigm from Javed and White
[23] that was later refined by Beaulieu et al. [4]. We build
off our method from a close re-implementation of their own
code to make sure we evaluate the merits of the different
optimization strategies as opposed to auxiliary details (e.g.,
network architecture). We provide an overview in Table 3
and a thorough description below.

Architecture details. The original code implementation
of Beaulieu et al. [4] starts by pre-processing the inputs by
reshaping the 84⇥ 84 Omniglot images to 28⇥ 28 and nor-
malizing them to unit mean (although this step does not ap-
pear to be important since inputs are already binary). The
utilized network architecture for the continual classifier f✓
is a simple convolutional network. The network is split into
a representation network (parameterized by the representa-
tion weights ✓r) and a final prediction head (parameterized
by the prediction weights ✓p). The representation network



Figure 5. Heatmaps of SiM4C’s final activations reshaped into 32⇥ 72 matrices, computed from two random data points sampled from all
the meta-testing tasks. In the rightmost heatmap, we also show the mean activations across all the meta-testing data points.

Meta pre-trained SiM4C hyper-parameters

Convolutional layers 3
Convolution filters 256
Convolution filter size 3⇥ 3
Nonlinearity ReLU
Normalization Instance normalization [47]
Maxpooling layers 2
Maxpooling filter size 2⇥ 2
Inner optimizer Gradient descent
Inner optimizer learning rate 0.1
Meta optimizer Adam [24]
Meta learning rate 0.001
Meta-testing optimizer Adam [24]
Meta-testing learning rate 0.001
Meta-gradient MAML [13]
Total number of updates 100000
Save model every 5000
Total sampled samples per task 20
Inner steps 1
Remember set size 64

Table 3. SiM4C hyper-parameters on the Omniglot online contin-
ual learning with meta pre-training benchmark. Choices try to be
consistent with Beaulieu et al. [4] and Javed and White [23].

comprises three convolutional layers (with 256 filters of size
3 ⇥ 3), each followed by an instance normalization layer
[47], and a ReLU activation function. The first two layers
are also followed by a maxpooling layer with a filter dimen-
sion of 2⇥ 2. Then the representations are flattened before
being processed by the prediction network, comprising a
single linear layer. Beaulieu et al. [4] also employs a par-
allel Neuromodulatory network with a similar architecture
and even more total parameters, which meta-learns to sup-
press the final representations of the representation network.
As this is their core distinguishing feature from OML and
adds non-trivial complexity, we do not employ this network
with SiM4C.

Optimization details. Again, following Beaulieu et al.
[4], we perform the outer (meta) optimization of ✓ with an
Adam [24] optimizer with default hyper-parameters (i.e.,

0.001 learning rate, 0.9 momentum coefficient). Instead, in-
ner optimization on the prediction weights ✓p is carried out
with standard gradient descent with a learning rate of 0.1
and no momentum. Interestingly, at meta-testing time, the
implementation of Beaulieu et al. [4] uses Adam rather than
SGD to finetune the prediction weights. While this appears
to be counter-intuitive, we kept this detail also in our im-
plementation for consistency. Unlike ANML and OML, we
employ the exact second-order gradient from MAML [13]
rather than first-order approximations. We meta pre-train
the model for 100K steps (as opposed to OML’s 200K) as
we observed no notable performance gains after this thresh-
old. We saved checkpoints from each model after 5000
steps. While SiM4C’s performance was very robust to the
checkpoint weights utilized for meta-testing, the other al-
gorithms appeared to be very sensitive to this choice, with
meta-testing performances decreasing by more than 15%
absolute accuracy if meta pre-training for too long. Since
we could not find any detail for ANML and OML about
how early stopping was implemented from their papers,
we just reported their best-performing checkpoint at meta-
testing (which is what appears to be done also for other
hyper-parameter selections from their shared implementa-
tions). Hence, we note this is likely overestimating their
actual performance for arbitrary continual learning applica-
tions. It also exemplifies the practical usefulness of a more
robust optimization procedure as SiM4C. As in ANML’s
meta-training phase, we also sample 20 (the maximum) dif-
ferent samples from a sampled task and employ a remember
set of size 64. However, we perform a single inner optimiza-
tion step, as proposed in our alternative algorithm. Finally,
during meta pre-training, we reset the final classification
weights of the sampled task to avoid prior meta-learning it-
erations providing information to the prediction network, as
consistently also carried out by ANML and OML. In pre-
liminary experiments, we also tested resetting to their ini-
tial value the classification weights of additional randomly
sampled classes. While we found this to potentially further
help against possible gradient vanishing problems, we did
not experience any significant boost in peak performance
for any of the considered algorithms.



Buffer Method S-CIFAR-10 S-Tiny-ImageNet
ER with SiM4C lr = 0.03 lr = 0.03

200 DER with SiM4C lr = 0.03,↵ = 0.1 lr = 0.03,↵ = 0.1
DER++ with SiM4C lr = 0.03,↵ = 0.1,� = 0.5 lr = 0.03,↵ = 0.1,� = 0.5

ER with SiM4C lr = 0.03 lr = 0.03
500 DER with SiM4C lr = 0.03,↵ = 0.1 lr = 0.03,↵ = 0.1

DER++ with SiM4C lr = 0.03,↵ = 0.1,� = 0.5 lr = 0.03,↵ = 0.1,� = 0.5

ER with SiM4C lr = 0.03 lr = 0.03
5120 DER with SiM4C lr = 0.03,↵ = 0.1 lr = 0.03,↵ = 0.1

DER++ with SiM4C lr = 0.03,↵ = 0.1,� = 0.5 lr = 0.03,↵ = 0.1,� = 0.5

Buffer Method P-MNIST R-MNIST
ER with SiM4C lr = 0.1 lr = 0.1

200 DER with SiM4C lr = 0.1,↵ = 1 lr = 0.1,↵ = 1
DER++ with SiM4C lr = 0.1,↵ = 1,� = 1 lr = 0.1,↵ = 1,� = 1

ER with SiM4C lr = 0.1 lr = 0.1
500 DER with SiM4C lr = 0.1,↵ = 1 lr = 0.1,↵ = 1

DER++ with SiM4C lr = 0.1,↵ = 1,� = 1 lr = 0.1,↵ = 1,� = 1

ER with SiM4C lr = 0.1 lr = 0.1
5120 DER with SiM4C lr = 0.1,↵ = 1 lr = 0.1,↵ = 1

DER++ with SiM4C lr = 0.1,↵ = 1,� = 1 lr = 0.1,↵ = 1,� = 1

Table 4. SiM4C hyper-parameters on the Class-IL, Task-IL, Domain-IL benchmarks. Choices are consistent across S-CIFAR-10 and S-
TINY-Imagenet, and across P-MNIST and R-MNIST. In particular, for both these groups of experiments we use the same learning rate, ↵,
and � values.

B.2. SiM4C without meta pre-training

In our implementation of SiM4C for continual learning
without meta pre-training, we integrate it with the main
memory-based algorithms considered by Buzzega et al. [6].
To show the generality of our procedure, as described in
Section 5, we add the proposed SiM4C meta-learning loss
after a single inner step as an auxiliary loss without any scal-
ing coefficient. Thus, we remark that SiM4C does not in-
troduce any additional hyper-parameter. While adding
complexity and tuning can provide performance benefits,
they can be easily confounded with overfitting to a partic-
ular set of problems. Moreover, depending on the metric
chosen to select hyper-parameters, they can even implicitly
break important continual learning constraints about task
accessibility [11].

Shared training and architecture details. We build our
implementation on top of the code from [6] and use exactly
the same models, training procedures, and data augmenta-
tion strategies for all experiments, ensuring that we specif-
ically isolate the contributions from SiM4C. As mentioned
in Section 5, for the Class-IL and Task-IL experiments on
S-CIFAR-10 and S-Tiny-ImageNet, all methods employ a
standard ResNet18 architecture [19]. In each newly en-
countered task, we train for 50 epochs in the S-CIFAR-10

experiments and 100 epochs in the S-Tiny-ImageNet exper-
iments. In both benchmarks, 32 data points are sampled
from the memory buffer and the current task at each train-
ing step, with a total batch size of 64. The used augmen-
tation strategy involves a combination of random cropping
and flipping the inputs. Instead, for the Domain-IL experi-
ments on the lower-dimensional Permuted MNIST and Ro-
tated MNIST datasets, all methods employ a simple fully
connected network with two layers and 100 hidden features.
ReLU activations without normalization are employed be-
tween the layers. Training for each new task is carried out
in a single epoch sampling 10 data points from both the task
and the memory buffer data (i.e., with a total batch size of
20). No image augmentation is used. In all aforementioned
benchmarks, the models are trained with a standard SGD
optimizer with a tuned learning rate.

Obtaining the future data batch. As introduced in Sec-
tion 5, SiM4C requires an additional batch of future data
from the current task to carry out its auxiliary optimiza-
tion. To avoid incurring additional memory costs from
using multiple batches of sampled data in each optimiza-
tion step, we opted for the simple solution of simply re-
augmenting the provided batch of data an additional time.
In practice, we found this simple strategy to work almost
as well. Moreover, since in the Domain-IL experiments, no



data augmentation is applied, we opted for the even simpler
solution of splitting the 10 samples from the current task
in two different smaller batches of 5 samples each, used as
the current data (for the inner step) and the future data (for
the outer step), respectively. The reason we did not apply
this simple idea also for the Class-IL and Task-IL exper-
iments on S-CIFAR-10 and S-Tiny-ImageNet, is that the
utilized ResNet18 entails several batch normalization lay-
ers [22], for which we wanted to maintain the number of
past, present, and future samples consistent. However, as
shown in the later ablation we performed (Appendix E), the
actual downsides of using different batch sizes are not con-
siderable, and all three mentioned choices of data selection
perform comparably on almost all problem settings, as long
as they provide some sensible information of within-task
variation.

Hyper-parameters. Buzzega et al. [6] performs exten-
sive hyper-parameter tuning with grid search on a held-
out subset of data to which it assumes to have unrestricted
access (arguably breaching the continual learning canoni-
cal restriction). They tune all the key parameters of every
method they consider, including the learning rate, and re-
peat this for each different benchmark and memory buffer
size considered. We refer to Tables 9 and 10 in their pa-
per for all details. Instead, we find that our integration
with SiM4C does not require any major tuning for per-
formance, selected based on the default values for ER,
DER, and DER++. In fact, unlike for the reported base-
line scores, we obtain our results using consistent hyper-
parameters across multiple datasets, base algorithms, and
memory buffer sizes. The only required modification was
to increase the learning rate and ↵ for the Domain-IL ex-
periments to balance training being now over a single epoch
per task. We provide the full list of values (with redundant
entries) in Table 4. We believe that using tuned baselines
and avoiding tuning our own implementations is strong ev-
idence for the added robustness provided by integrating
SiM4C, given the substantial gains recorded in Section 5.

B.3. Hardware setup

We run our experiments on a combination of different lo-
cal and remote hardware. The remote hardware comprises
NVIDIA’s MAXQ Deep Learning Systems with NVIDIA
V100 GPUs. We also employ a local server with two
NVIDIA RTX 3090 GPUs and an AMD Ryzen Threadrip-
per 3970x CPU. However, to ensure our recorded memory
utilization and optimization timings are consistent, we col-
lect also recordings from each experiment individually on
another local server with a single NVIDIA Titan XP GPU
and an Intel Core i7-7700K CPU.

C. Extended results
C.1. Additional integrations and comparisons

In this Section, we extend the results from Section 5,
by reporting the Class-IL, Task-IL, and Domain-IL perfor-
mance of the tested algorithms and baselines with an addi-
tional memory buffer size of 5120. Moreover, we also com-
pare also with the other popular non-memory-based contin-
ual learning algorithms [33, 43, 46, 55]. We note that while
effective, some of these baselines (e.g., Progressive Neural
Networks (PNN) [43]) make strong assumptions about ac-
cess to specific task boundaries, and cannot be directly ap-
plied to the more general Class-IL and Domain-IL settings.
We refer to Section 5 and Appendix B for all details about
our experiments on these benchmarks.

As shown in Table 5, SiM4C once again provides
memory-based algorithms with near-universal improve-
ments in performance, achieving state-of-the-art results also
for the considered increased buffer size. Moreover, the
largest gains are attained in the more challenging problem
settings precluding task information (Class-IL) or involv-
ing increased amounts of more complex samples (S-Tiny-
ImageNet). Even in the comparatively easier Domain-IL
settings on the MNIST variants, we again recorded per-
formance benefits (with a lower magnitude) in all but one
experiment. Expectedly, relative gains appear to diminish
with increased buffer sizes, as the different base algorithms
already have a smaller gap with the i.i.d. performance of
joint training, leaving a smaller room for improvements.

C.2. Per-task detailed performance curves
We further extend the results from Section 5 with more

fine-grained metrics showing the per-task performance
curves of the DER algorithm, with and without SiM4C on
the S-CIFAR-10 dataset. In Figure 6 we show how perfor-
mance evolves for each of the five tasks comprising two of
the CIFAR10 classes with different memory buffer sizes and
in both Class-IL and Task-IL settings. Integrating SiM4C
appears to ease the integration of new information, as clas-
sification accuracy for the new tasks is consistently higher,
indicating better forward transfer. Moreover, the overall
amount of forgetting, especially for the earlier tasks is re-
duced, indicating better information retention and backward
transfer on longer optimization horizons.

C.3. Forgetting and forward transfer
In Table C.3 we further extend the results from Section 5

by also providing the amounts of forgetting and forward
transfer as measured by Buzzega et al. [6]. We only re-
port forward transfer in the Domain-IL continual learning
problems, since there is no principled and precise metric
to estimate forward transfer when the classes in each task
are mutually exclusive. However, since performance on the



Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

7
JOINT 92.20 98.31 59.99 82.04 94.33 95.76
SGD 19.62 61.02 7.92 18.31 40.70 67.66

oEWC [46] 19.49 68.29 7.58 19.20 75.79 77.35

7
SI [55] 19.48 68.05 6.58 36.32 65.86 71.91
LwF [33] 19.61 63.29 8.46 15.85 - -
PNN [43] - 95.13 - 67.84 - -

ER [41] 82.47 96.98 27.40 67.29 89.90 93.45
(Ours) ER with SiM4C 85.52 +3.7% 97.13 +0.2% 28.78 +5.0% 68.63 +2.0% 89.66 �0.3% 93.98 +0.6%

GEM [35] 25.26 95.55 - - 87.42 88.57
A-GEM [8] 21.99 90.10 7.96 26.22 73.32 80.18
iCaRL [40] 55.07 92.23 14.08 40.83 - -
FDR [5] 19.70 94.32 28.97 68.01 90.87 94.19

5120 GSS [2] 67.27 94.19 - - 82.22 85.24
HAL [9] 59.12 88.51 - - 89.20 91.17
DER [6] 83.81 95.43 36.73 69.50 91.66 94.14

(Ours) DER with SiM4C 86.03 +2.6% 96.00 +0.6% 39.61 +7.8% 69.55 +0.1% 91.74 +0.1% 94.34 +0.2%

DER++ [6] 85.24 96.12 39.02 69.84 92.26 94.65
(Ours) DER++ with SiM4C 86.05 +1.0% 96.45 +0.3% 40.27 +3.2% 70.06 +0.3% 92.35 +0.1% 94.70 +0.1%

Table 5. Mean final classification accuracy and relative improvements (green) from using SiM4C with different memory-based algorithms,
as evaluated on popular continual learning benchmarks on an additional memory buffer size. We provide the baseline results reported
in prior work including also other non-memory-based baselines. Empty entries indicate either incompatibility with the relative problem
setting (LwF, PNN, iCaRL in Domain-IL) or intractable training times [6].

A) FORGETTING B) FWD. TRANSFER

Buffer Method S-CIFAR-10 P-MNIST R-MNIST P-MNIST R-MNIST
Class-IL Task-IL Domain-IL Domain-IL Domain-IL Domain-IL

ER 61.24 7.08 22.54 8.87 1.37 66.79

200 DER 40.76 6.57 14.00 6.53 1.23 64.69
DER++ 32.59 5.16 11.49 6.08 0.91 67.05
DER with SiM4C 26.57 4.10 9.95 5.62 1.19 67.00

ER 45.35 3.54 14.90 8.02 0.56 65.52

500 DER 26.74 4.56 8.07 3.96 0.21 72.45
DER++ 22.38 4.66 7.67 3.57 �0.35 67.05
DER with SiM4C 21.54 3.38 7.58 3.71 0.33 72.21

Table 6. Detailed results with (A) forgetting, lower is better, and (B) forward transfer, higher is better. We compare the main algorithms
from Buzzega et al. [6] with our integration of DER with SiM4C.

MNIST-based continual learning tasks already appears to
be quite saturated, these results are likely less informative.
In line with our intuition and previous observations, over-
all, adding SiM4C on top of DER lowers forgetting and im-
proves forward transfer.

C.4. Training time and memory

We also provide recordings of the time taken for a sin-
gle training iteration, together with GPU memory require-
ments of our memory-based SiM4C integrations and the rel-
ative base algorithms employed. As shown in Figure 7, us-

ing SiM4C predictably adds some time and memory over-
heads to the base algorithms, since it introduces a new sep-
arate step in the optimization procedure. However, we see
these overheads appear to be quite limited and comparable
with the overheads of other tractable non-meta-learning ad-
vances. For instance, the recorded time overhead of DER++
from DER appears to be greater than introducing SiM4C to
DER. Also, GPU memory costs appear to be dominated by
other processes in the optimization procedure even after the
introduction of SiM4C. The tractability of SiM4C is due to
its minimal effective design, avoiding the introduction of



Figure 6. Detailed results comparing the per-task performance curves of DER and our integration with SiM4C on the S-CIFAR-10 dataset.
We show how the classification accuracy evolves for the classes in each of the five tasks, when using (A) memory buffers of size 200 and
(B) memory buffers of size 500, in both (1) Class-IL and (2) Task-IL continual learning settings.

Figure 7. (A) average time taken to perform a single training iter-
ation and (B) GPU memory requirements, as measured on the S-
CIFAR-10 experiments with our different integrations of SiM4C.
We compare with the results for the relative base algorithms used
in our integrations.

large computation graphs that often occur when tradition-
ally applying meta-learning for continual learning [17, 41].

D. SiM4C ablations and design
In this Section, we evaluate several modifications to

SiM4C as a meta pre-training procedure, to validate and un-
derstand the effectiveness of its design choices. We again
make use of the Omniglot dataset and follow the same
meta pre-training and meta-testing procedures details in
Section 3.1 and Appendix B. To summarize our results, we
report them in a tabular format, showing the final classifica-
tion accuracy at the end of meta-testing on 600 tasks both
with respect to the test and training data. We also report
the different algorithms’ GPU memory utilization and time
to perform a single optimization loop to understand their
tradeoffs. As in the rest of our experiments, we use five
different random seeds.

D.1. SiM4C objective ablations

We validate the efficacy of three distinct aspects of
SiM4C’s optimization procedure: the exact second-order
gradient computation, together with both the utilization of
future and past data in the meta-loss. In particular, we eval-
uate using the same first-order gradient approximation with
SiM4C as in prior work [4, 17, 23, 41], not including in



Method Final test accuracy Final training accuracy GPU memory (MB) Optimization time (ms)

SiM4C 0.713±0.00 0.972±0.00 1487 0.118±0.01

SiM4C meta-objective ablations

First order gradient 0.692±0.01 0.960±0.00 1472 0.116±0.02

No future data 0.709±0.00 0.974±0.00 1485 0.119±0.01

No past data 0.004±0.00 0.012±0.01 1481 0.109±0.02

SiM4C with increased inner steps

2 inner steps 0.714±0.00 0.974±0.00 1498 0.157±0.01

5 inner steps 0.709±0.00 0.972±0.00 1525 0.228±0.01

10 inner steps 0.702±0.00 0.968±0.00 1542 0.313±0.00

20 inner steps 0.680±0.00 0.976±0.00 1603 0.401±0.00

Table 7. Comparison of different modifications of our SiM4C meta pre-trained implementation. We report the mean and standard deviation
of the final performance on both test and training samples at the end of meta-testing, after experiencing 600 tasks on the Omniglot online
continual learning benchmark. We also report the recorded GPU memory and optimization time of each algorithm.

the meta loss any unseen ‘future data’ from the current task
and not including any ‘past data’ from all previous classes
(i.e., ablating the remember set). We provide the results in
the top half of Table 7. All three ablations degrade test per-
formance, validating our methodology. Not using past data
appears to have the most drastic effect, as without a remem-
ber set the meta-objective does not incentivize the model to
remember old tasks, but only to optimize the current task.
Hence, the only incentive left in the meta-objective is to
discard all prior knowledge and learn how to best quickly
solve the current task in a single step, potentially even ex-
acerbating catastrophic forgetting. We would also like to
note that the performance difference with the ablating future
data from the meta-objective is notably lower than from us-
ing first-order gradients. This can be explained by the fact
that since we are only taking a single inner gradient step
for each task, with a single data point out of 20 available
in Omniglot, the remember set will already contain a lot of
unseen samples, including from the current task. Thus, in-
cluding the rest of the unseen task data is likely to have a
still positive, but lower-magnitude impact on performance
as opposed to scenarios where meta pre-training task data
was more limited.

D.2. Increasing the number of inner steps
We also validate the efficacy of another fundamental de-

sign principle of SiM4C, the number of inner steps k. In
particular, we meta pre-train SiM4C with k = 2, k =
5, k = 10, and k = 20 inner steps. We provide the re-
sults in the bottom half of Table 7. As expected, increasing
k leads to a monotonic increase in GPU memory alloca-
tion and optimization time, thus, increasing the computa-
tional cost of meta pre-training. Furthermore, we see that
increasing the value of k beyond 2 leads to an increasing
deterioration of test accuracy. We hypothesize that two po-
tentially complementary factors explain this deterioration,

Figure 8. Average L2 gradient norms recorded in the (A) first and
(B) last 500 meta pre-training iterations of SiM4C with different
numbers of inner steps k used in the meta-objective.

in line with previous considerations. First, a higher k leads
to lower amounts of unseen ‘future’ data in the meta-loss as
the model will have seen greater amounts of the available
samples for both the current and past tasks. Hence, the re-
sulting meta-learning optimization will place increasingly
less emphasis on future transfer and generalization. This
phenomenon appears to be evidenced by the fact that, unlike
test accuracy, the training accuracy on the seen training ex-
amples does not seem to be majorly affected, showing that
meta pre-training with larger values of k does not degrade
knowledge retention with respect to seen past samples. Sec-
ond, backpropagating through a large number of inner steps
appears to hinder the stability of meta pre-training, consis-
tently with some of the observations of Antoniou et al. [3].
The reason for these instabilities comes from the repeated
forward and backward passes through the same layers of a
neural network during the inner optimization process, facil-
itating the emergence of exploding and vanishing effects.



We provide evidence of this phenomenon occurring during
meta pre-training by recording and comparing the L2 mag-
nitude of the meta-gradients during both the first and the last
500 iterations of meta pre-training. As shown in Figure 8,
during the beginning of meta pre-training, increasing the
number of inner steps leads to an increase up to five times
an already high gradient magnitude. Instead, at the end of
meta pre-training, increasing the number of inner steps in-
stead leads to a decrease of an already much lower gradient
magnitude. Concretely, the ratio of start to final gradient
magnitudes is less than 6 for the original k = 1 and over
78 for k = 20, evidencing the increased sensitivity to the
aforementioned instabilities.

D.3. Data diversity for meta-pre-training

We further extend our comparison of ANML and SiM4C
by analyzing how pre-training data diversity affects the ef-
fectiveness of these algorithms. In particular, we compare
their final classification accuracy after meta-testing on the
full set of 600 unseen tasks, after meta-pre-training with a
reduced number of total tasks (Figure 9 A) and a reduced
number of total samples per task (Figure 9 B). Predictably,
for both algorithms, diminishing data diversity monotoni-
cally hiders test performance. However, SiM4C is visibly
less affected than ANML. For instance, even under the most
extreme considered settings (100 meta-pre-training tasks
and 5 samples per task) SiM4C still recovers a final clas-
sification accuracy of around 60%, very close to ANML’s
performance using the full set of meta-pre-training data. In
contrast, ANML’s final classification accuracy sinks, get-
ting as low as 21%, likely due to meta-overfitting to the sim-
plified meta-pre-training setting. These results highlight the
difficulty of meta-learning under constrained data budgets
and also further highlight SiM4C effectiveness and ability
to overcome meta-overfitting.

E. Auxiliary meta-optimization and future
data generation strategies

As detailed in Section 5, when integrated with memory-
based algorithms, SiM4C optimizes its auxiliary meta-
objective and relies on what we refer to as a ‘future’ batch
of data Dfut from the current task. In this section, we evalu-
ate different modification to this auxiliary optimization step.
We introduced several strategies to obtain both the ‘current’
batch of samples Dcurr (to use in the inner optimization step)
and this ‘future’ batch of samples from a single batch of data
available at each training step. The employed strategy in
most of our main experiments is to make use of the data-
augmentation strategies already-present in the considered
continual learning baselines, for which the precise scope
is to capture within-task variations. Hence, we augment
the sampled batch from the current task two independent

Buffer Method S-CIFAR-10
Class-IL Task-IL

ER [41] 44.79 91.19
ER with SiM4C (no meta) 53.79 92.41
ER with SiM4C (re-augment) 54.77 92.38
ER with SiM4C (past data) 54.73 92.43

200 ER with SiM4C (split data) 56.02 91.96
ER with SiM4C (grad. split) 57.24 92.15

DER [6] 61.93 91.40
DER with SiM4C (no meta) 61.47 91.86
DER with SiM4C (re-augment) 63.81 90.85
DER with SiM4C (past data) 63.85 92.19
DER with SiM4C (split data) 54.34 92.15
DER with SiM4C (grad. split) 59.09 91.74

ER [41] 57.74 93.61
ER with SiM4C (no meta) 61.02 90.75
ER with SiM4C (re-augment) 66.05 94.37
ER with SiM4C (past data) 66.61 94.42

500 ER with SiM4C (split data) 66.32 93.72
ER with SiM4C (grad. split) 67.52 92.84

DER [6] 70.51 93.40
DER with SiM4C (no meta) 65.06 94.01
DER with SiM4C (re-augment) 72.62 93.94
DER with SiM4C (past data) 72.49 93.89
DER with SiM4C (split data) 63.73 94.03
DER with SiM4C (grad. split) 67.29 93.99

Table 8. Mean final classification accuracy from ablating meta gra-
dients from the SiM4C auxiliary loss and different strategies to ob-
tain both a ‘current’ and ‘future’ data batch (in brackets). We focus
on the S-CIFAR-10 benchmark in Class-IL and Task-IL settings
for the DER and ER-based algorithms with two memory buffer
sizes.

times, to act as both Dcurr and Dfut. We will refer to this ap-
proach as SiM4C (re-augment). However, we believe that
a more natural choice would entail temporarily storing each
sampled batch data of the current task for two optimization
steps rather than one. This would allow for the earlier col-
lected batch to act as Dcurr and the later collected batch to
act as Dfut. However, we note that this approach introduces
some additional minimal constant memory costs from stor-
ing the extra batch. Hence, we do not employ this strategy
in our main experiments to ensure a fair comparison with
the other memory-based algorithms. We will refer to this
approach as SiM4C (past data). Furthermore, as detailed
in Appendix B.2, as in the MNIST Domain-IL experiments
no data augmentation is applied, we simply split the 10 sam-
ples from the current task into two different smaller batches
of 5 samples each to act as Dcurr and Dfut. However, for the
other benchmarks, using a smaller batch size for the cur-
rent and future data and a standard batch size for the past
data sampled from the memory buffer could incur issues



Figure 9. Performance on the online meta continual Omniglot benchmark after meta pre-training with reduced data-diversity. We compare
the final meta-testing classification accuracy as we vary the (A) the total number of meta-pre-training tasks from 963 to {600, 300, 100}
and (B) the samples available for each meta-pre-training task from 20 to {15, 10, 5}.

due to the batch-normalization layers employed in the uti-
lized ResNet architectures [19]. In contrast, we note that
the fully-connected architectures in the Domain-IL experi-
ments are unaffected by the variance of the inputs. We will
refer to this approach as SiM4C (split data). Lastly, we
also consider a modification to this naive splitting strategy
where, rather than random sampling, we partition sampled
batch of data into Dfut and Dcur by computing the gradients
with respect to the meta-learned parameters and find a parti-
tion that maximized the angle between their gradients. This
strategy is inspired by recent methods that propose simi-
lar strategies for actively choosing which data to sample
from the memory buffer [2]. The effects of splitting data
with this criterion should be to induce a larger distribution
shifts between Dcurr and Dfut, trying to better approximate
the distribution shift across different tasks. We will refer
to this approach as SiM4C (grad. split). To provide ad-
ditional validation to the relevance of meta-learning in the
auxiliary step, we also consider a simple ablation replac-
ing SiM4C’s exact second-order meta-optimization with an
additional first-order gradient step on the same data with a
different data augmentation. We refer to this baseline as
SiM4C (no meta).

We perform experiments comparing the efficacy of this
ablation and the different strategies for obtaining future data
in the S-CIFAR-10 benchmark for both Class-IL and Task-
IL scenarios. We consider integrating these different ver-
sions of SiM4C both with the simple memory-based base-
line from Riemer et al. [41] (ER), and Dark Experience Re-
play (DER) [6]. As reported in Table 8, all four versions of
SiM4C appear to considerably improve performance from
their base algorithm and the SiM4C (no meta) ablation. The
only exceptions appears to be SiM4C with the split-based
strategies when applied to DER on the Class-IL scenarios.
In line with our previous intuition, this is likely caused by

using batch normalization with inconsistent batch sizes be-
tween the past, current, and future data. This is evidenced
by the fact that the same phenomenon does not occur when
using SiM4C (split data/grad-split) with ER, since in the uti-
lized base implementation (taken from [6]) past and current
data are concatenated and evaluated together, as opposed
to the base implementation of DER where they are pro-
cessed separately. Furthermore, while in most of the con-
sidered settings, SiM4C (past data) provides the most bene-
fits, its gains over the other strategies appear to be relatively
marginal. Hence, our results appear to confirm the practi-
cality and robustness of our approach, which we hope will
contribute to shaping future meta-learning research toward
empowering continual learning. As a final consideration,
the gradient-based splitting strategy in SiM4C (grad. split)
appears to provide overall improvements to SiM4C (split
data), suggesting data selection strategies for meta-learning
are a promising unexplored direction for future investiga-
tion.

References
[1] R. Aljundi, K. Kelchtermans, and T. Tuytelaars. Task-Free

Continual Learning. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11246–11255, Long Beach, CA, USA, June 2019. IEEE.
ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019.01151.
8

[2] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient
based sample selection for online continual learning. In Ad-
vances in Neural Information Processing Systems, 2019. 7,
8, 17, 21

[3] A. Antoniou, H. Edwards, and A. Storkey. How to train
your maml. In Seventh International Conference on Learn-
ing Representations, 2019. 1, 3, 4, 19

[4] S. Beaulieu, L. Frati, T. Miconi, J. Lehman, K. O. Stanley,
J. Clune, and N. Cheney. Learning to continually learn. In



ECAI 2020, pages 992–1001. IOS Press, 2020. 1, 2, 3, 4, 5,
8, 13, 14, 18

[5] A. S. Benjamin, D. Rolnick, and K. P. Kording. Measuring
and regularizing networks in function space. International
Conference on Learning Representations, 2019. 7, 8, 17

[6] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and
S. Calderara. Dark experience for general continual learn-
ing: a strong, simple baseline. Advances in neural informa-
tion processing systems, 33:15920–15930, 2020. 2, 3, 7, 8,
15, 16, 17, 20, 21

[7] M. Caccia, P. Rodriguez, O. Ostapenko, F. Normandin,
M. Lin, L. Page-Caccia, I. H. Laradji, I. Rish, A. Lacoste,
D. Vázquez, and L. Charlin. Online Fast Adaptation and
Knowledge Accumulation (OSAKA): A New Approach to
Continual Learning. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 16532–16545. Curran
Associates, Inc., 2020. 1, 3

[8] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny.
Efficient lifelong learning with a-gem. In International Con-
ference on Learning Representations, 2019. 7, 8, 17

[9] A. Chaudhry, A. Gordo, P. K. Dokania, P. Torr, and
D. Lopez-Paz. Using hindsight to anchor past knowledge in
continual learning. arXiv preprint arXiv:2002.08165, 2020.
7, 8, 17

[10] M. De Lange and T. Tuytelaars. Continual Prototype Evo-
lution: Learning Online From Non-Stationary Data Streams.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8250–8259, 2021. 8

[11] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia,
A. Leonardis, G. Slabaugh, and T. Tuytelaars. A continual
learning survey: Defying forgetting in classification tasks.
IEEE transactions on pattern analysis and machine intelli-
gence, 44(7):3366–3385, 2021. 1, 7, 15

[12] N. Dı́az-Rodrı́guez, V. Lomonaco, D. Filliat, and D. Maltoni.
Don’t forget, there is more than forgetting: New metrics for
Continual Learning. (Nips), 2018. 1, 8

[13] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pages 1126–1135.
PMLR, 2017. 3, 4, 12, 14

[14] R. M. French. Using semi-distributed representations to
overcome catastrophic forgetting in connectionist networks.
In Proceedings of the 13th annual cognitive science society
conference, volume 1, pages 173–178, 1991. 1, 8, 13

[15] R. M. French. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3(4):128–135, Apr.
1999. ISSN 1364-6613. doi: 10.1016/S1364-6613(99)
01294-2. 1, 8

[16] S. T. Grossberg. Studies of mind and brain: Neural prin-
ciples of learning, perception, development, cognition, and
motor control, volume 70. Springer Science & Business Me-
dia, 2012. 1

[17] G. Gupta, K. Yadav, and L. Paull. Look-ahead meta learn-
ing for continual learning. Advances in Neural Information
Processing Systems, 33:11588–11598, 2020. 1, 3, 4, 8, 18

[18] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu. Embracing
change: Continual learning in deep neural networks. Trends
in cognitive sciences, 24(12):1028–1040, 2020. 1

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 7, 15, 21

[20] X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. W. Teh,
and R. Pascanu. Task Agnostic Continual Learning via Meta
Learning. arXiv:1906.05201 [cs, stat], June 2019. 8

[21] G. Hinton, O. Vinyals, and J. Dean. Dark knowledge. Pre-
sented as the keynote in BayLearn, 2(2), 2014. 3

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–
456. pmlr, 2015. 16

[23] K. Javed and M. White. Meta-learning representations for
continual learning. Advances in neural information process-
ing systems, 32, 2019. 1, 2, 3, 5, 8, 13, 14, 18

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 14

[25] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,
A. Grabska-Barwinska, et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017. 7

[26] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of
features from tiny images. 2009. 7

[27] D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov,
D. Blackiston, J. Bongard, A. P. Brna, S. Chakravarthi Raja,
N. Cheney, J. Clune, et al. Biological underpinnings for life-
long learning machines. Nature Machine Intelligence, 4(3):
196–210, 2022. 1

[28] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-
level concept learning through probabilistic program induc-
tion. Science, 350(6266):1332–1338, 2015. 4, 5

[29] Y. Le and X. Yang. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015. 7

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 7

[31] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat,
and N. Dı́az-Rodrı́guez. Continual learning for robotics:
Definition, framework, learning strategies, opportunities and
challenges. Information Fusion, 58:52–68, June 2020. ISSN
1566-2535. doi: 10.1016/j.inffus.2019.12.004. 1, 8

[32] T. Lesort, A. Stoian, and D. Filliat. Regularization Shortcom-
ings for Continual Learning. arXiv:1912.03049 [cs, stat],
Feb. 2020. 8

[33] Z. Li and D. Hoiem. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
40(12), 2017. 16, 17

[34] V. Liu, R. Kumaraswamy, L. Le, and M. White. The utility
of sparse representations for control in reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4384–4391, 2019. 13

[35] D. Lopez-Paz and M. Ranzato. Gradient episodic memory
for continual learning. In Advances in Neural Information
Processing Systems, 2017. 7, 8, 12, 17

[36] M. McCloskey and N. J. Cohen. Catastrophic interference
in connectionist networks: The sequential learning problem.



In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989. 1

[37] A. Nichol, J. Achiam, and J. Schulman. On First-Order
Meta-Learning Algorithms, Oct. 2018. 8

[38] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999, 2018.
1, 12

[39] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-
learning with implicit gradients. Advances in neural infor-
mation processing systems, 32, 2019. 4

[40] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
icarl: Incremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2017. 7, 8, 17

[41] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and
G. Tesauro. Learning to learn without forgetting by max-
imizing transfer and minimizing interference. In Interna-
tional Conference on Learning Representations, 2019. 1, 2,
3, 7, 8, 12, 17, 18, 20, 21

[42] A. Rosasco, A. Carta, A. Cossu, V. Lomonaco, and D. Bac-
ciu. Distilled Replay: Overcoming Forgetting Through
Synthetic Samples. In F. Cuzzolin, K. Cannons, and
V. Lomonaco, editors, Continual Semi-Supervised Learning,
volume 13418, pages 104–117. Springer International Pub-
lishing, Cham, 2022. ISBN 978-3-031-17586-2 978-3-031-
17587-9. doi: 10.1007/978-3-031-17587-9 8. 9

[43] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,
J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Had-
sell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. 16, 17

[44] M. Sangermano, A. Carta, A. Cossu, and D. Bacciu. Sam-
ple Condensation in Online Continual Learning. In 2022 In-
ternational Joint Conference on Neural Networks (IJCNN),
pages 01–08, July 2022. doi: 10.1109/IJCNN55064.2022.
9892299. 9

[45] J. Schmidhuber. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-...
hook. PhD thesis, Technische Universität München, 1987.
3

[46] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-
Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell. Progress
& compress: A scalable framework for continual learning.
In International Conference on Machine Learning, 2018. 16,
17

[47] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. arXiv
preprint arXiv:1607.08022, 2016. 14

[48] G. M. van de Ven and A. S. Tolias. Three scenarios for con-
tinual learning. Arxiv preprint, Apr. 2019. doi: 10.48550/
arXiv.1904.07734. 1, 2

[49] G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias. Brain-
inspired replay for continual learning with artificial neural
networks. Nature Communications, 11(1):4069, Aug. 2020.
ISSN 2041-1723. doi: 10.1038/s41467-020-17866-2. 8

[50] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):37–
57, 1985. 2

[51] J. von Oswald, D. Zhao, S. Kobayashi, S. Schug, M. Cac-

cia, N. Zucchet, and J. Sacramento. Learning where to
learn: Gradient sparsity in meta and continual learning. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 5250–5263. Curran Associates, Inc., 2021.
8

[52] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset
Distillation. arXiv:1811.10959 [cs, stat], Feb. 2020. 9

[53] F. Wiewel and B. Yang. Condensed Composite Memory
Continual Learning. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, July 2021. doi:
10.1109/IJCNN52387.2021.9533491. 9

[54] R. Yu, S. Liu, and X. Wang. Dataset Distillation: A Compre-
hensive Review, Jan. 2023. 9

[55] F. Zenke, B. Poole, and S. Ganguli. Continual learning
through synaptic intelligence. In International Conference
on Machine Learning, 2017. 7, 16, 17

[56] B. Zhao, K. R. Mopuri, and H. Bilen. Dataset Condensa-
tion with Gradient Matching. In International Conference
on Learning Representations, Sept. 2020. 9


