
HiFace: High-Fidelity 3D Face Reconstruction
by Learning Static and Dynamic Details

————————Appendix————————

In this supplementary, we provide additional results and
discussions to make our paper self-contained. Specifically,
we present 1). more details on experiments and implemen-
tation in Sec. A, 2). details of loss functions in Sec. B, 3).
more experimental comparisons and results in Sec. C, 4).
discussions on limitations and future work in Sec. D, and
5). discussions on social impact in Sec. E.

A. Experimental & Implementation Details
A.1. Details of Dataset

We follow the synthetic data pipeline [13, 17] to syn-
thesize 200k images, consisting of 40k identities with 5
frames. For each identity, we assign different expressions,
viewpoints, illumination, accessories, and backgrounds to
improve the model’s robustness for training.

In addition, in the synthetic data pipeline, the ground-
truth albedo, neutral displacement maps, stretched displace-
ment maps, and compressed displacement maps are sam-
pled from the 332 captured scans [13, 17] and recorded.
In this paper, to ensure the efficiency of our model, we
resize the 4096 ⇥ 4096 resolution assets into 512 ⇥ 512
as the ground-truth labels for training. For the real-world
data [11, 12], we split them into the train (400k) and valid
(30k). During training, common data augmentation tech-
niques (i.e., random shift, scale, rotation, and flip) are
adopted to improve the robustness of our model.

A.2. Details of Ablation Studies
In the ablation on datasets, we only remove the real-

world data while keeping other settings the same as our full
HiFace. In the ablation on loss functions, we only remove
specific loss functions while training the models that follow
the same settings as our full HiFace.

For the ablation studies on SD-DeTail, in SD-1, instead
of obtaining the dynamic detail by interpolating the com-
pressed and stretched displacement maps as in SD-DeTail,
we directly synthesize the dynamic detail by a learnable net-
work end-to-end. The ground-truth labels for the synthetic
dataset follow the dynamic composition in Eq. 9. More
specifically, we use an MLP layer to map expression-aware
� into 128-dim latent code z1, and follow [6] to use a U-Net

decoder [14] to synthesize corresponding dynamic displace-
ment map in 512⇥ 512 resolution.

In SD-2, instead of generating compressed and stretched
displacement maps using the PCA bases as in SD-DeTail,
we employ two learnable networks to synthesize the com-
pressed and stretched displacement maps in parallel, and
compound the dynamic details by interpolating the two dis-
placement maps using Eq. 9. Similar to SD-1, we use two
MLP layers to map � into 128-dim latent codes z2 and z02,
and use two U-Net decoders to synthesize corresponding
polarized displacement maps in 512⇥ 512 resolution.

In SD-3, instead of generating the static displacement
map using the PCA basis as in SD-DeTail, we directly syn-
thesize the static detail by a learnable network end-to-end.
More specifically, we use an MLP layer to map age-aware
' into 128-dim latent code z3, and follow [6] to use a U-Net
decoder [14] to synthesize corresponding static displace-
ment map in 512⇥ 512 resolution.

B. Details of Loss functions
In our main paper, we propose several simple yet effec-

tive loss functions to train our model end-to-end using both
synthetic and real-world data. As we have justified through
the detailed ablation studies, each loss function contributes
to the coarse shape and details. In this section, we introduce
details about self-supervised losses Lself and knowledge dis-
tillation Lkd.

B.1. Details of Self-Supervised Losses
Following [6, 5], we leverage the differentiable ren-

derer [7] to obtain the rendered image Îr, then use photo
loss Lpho and identity loss Lid to compute the error between
the input image I and Îr. We also follow [18] to use dense
landmark loss Llmk to calculate the error between the de-
tected landmarks from I and projected landmarks from Ŝ,
as self-supervised loss is still crucial to ensure satisfactory
generalization to real-world images.

Photo loss Lpho computes the l2 error between I and Îr:

Lpho =
���MI �

⇣
I� Îr

⌘���
2
, (A16)
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Figure A10. Error map on REALY benchmark. We visualize
and compare the reconstruction error of HiFace to previous meth-
ods. From left to right: Input image & ground-truth, Deep3D [5],
MGCNet [15], DECA [6], EMOCA [3], MICA [23]), and HiFace
(Ours), where large (small) errors are colored in red (blue). The
proposed method presents the best reconstruction quality.

where MI is the region-of-interest mask [22] of image I,
which only considers facial skins and removes occlusions.

Identity loss Lid leverages the pretrained face recogni-
tion network � [4] to estimate the cosine similarity between
high-level features from I and Îr:

Lid =
�(I) · �(Îr)

k�(I)k2 · k�(Îr)k2
, (A17)

Dense landmark loss Llmk leverages the landmark detec-
tor [18] to detect 669 dense landmarks of given 2D im-
ages, and estimate the distance between the detected and

projected 2D points from the reconstructed shape Ŝ:

Llmk =
669X

i=1

kµi � µ̂ik2
2�2

i

, (A18)

where µi and �i are the coordinates and uncertainty of the
i-th detected landmark from I, respectively. µ̂i denotes the
i-th projected 2D landmark from the reconstructed shape Ŝ.

B.2. Details of Knowledge Distillation
The age prediction model �age [9] predicts the age of

given images into 9 categories: 0�2, 3�9, 10�19, 20�29,
30 � 39, 40 � 49, 50 � 59, 60 � 69, and 70+. Therefore,
we leverage 3-layer MLP to transform the static coefficient
' into a 9-dim vector, and use softmax to map into a proba-
bility distribution p̂age.

C. Additional Experimental Results
In this section, we provide additional results to

strengthen the superiority of HiFace in reconstructing 3D
shapes with animatable details. Specifically, we present
1). error maps on REALY [1] in Fig. A10, 2). additional
reconstruction comparisons of coarse shape and details in
Fig. A11 and Fig. A12, respectively, 3). additional exper-
iments on flexibility for both images and video sequences
in Fig. A13 and Fig. A14, Fig. A15, Fig. A16, respectively,
and 4). additional animation comparisons in Fig. A17 and
Fig. A18, 5). user studies about the reconstruction and ani-
mation quality in Tab. A2 and Tab. A3, respectively.

C.1. Error Maps of REALY Benchmark
In Fig. A10, we present additional comparisons of the

error map on the REALY benchmark [1]. The RGB color
in ground-truth regions is mapped from the vertex-to-vertex
error between the ground-truth and predicted shape accord-
ing to the evaluation protocol in [1]. Compared to previous
methods, HiFace reaches the smallest error and the best re-
construction quality.

C.2. Reconstruction Comparisons

Qualitative Comparisons. In Fig. A11 and Fig. A12,
we present additional comparisons of HiFace to previous
coarse shape reconstruction methods [5, 8, 19, 23, 18] and
detail reconstruction methods [20, 2, 6, 3, 16]. The input
images show diversity w.r.t. ethnicity, gender, age, BMI,
pose, environment, occlusion, and expression. Compared to
previous methods, HiFace is robust to occlusions, extreme
poses, and diversity expressions. HiFace reconstructs real-
istic coarse shapes, better expressions, and realistic details.

User Study. To demonstrate that our reconstructed 3D faces
present visually better results and are faithfully aligned
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Figure A11. Comparison on coarse shape reconstruction. From left to right: Input image, Deep3D [5], 3DDFA-v2 [8], SynergyNet [19],
MICA [23], Dense [18], and HiFace (Ours). Note that MICA focuses on identity reconstruction, lacking the consideration of expression.

with human perception, we present a user study by invit-
ing 77 volunteers with a computer science background to

vote for the best-reconstructed shapes, from sampled faces
in CelebA [11], FFHQ [10], and AFLW2000 [21]. Specif-
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Figure A12. Comparison on detail shape reconstruction. From left to right: Input image, FaceScape [20], Unsup [2], DECA [6],
EMOCA [3], FaceVerse [16], and HiFace (Ours). “4” indicates this method fails to return any reconstruction.

ically, we separately compare methods for coarse shape
reconstruction [5, 8, 19, 23, 18], and detailed reconstruc-

tion [20, 2, 6, 3, 16]. The results are summarized in Tab. A2.
Tab. A2 shows that more than half of users perceive
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Figure A13. Illustration on the flexibility of SD-DeTail. Given the identity and expression coefficients (�, ⇠) from the optimization-based
method [18], SD-DeTail can generate realistic details based on the coarse shape and further improve the visual quality.
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Figure A14. Illustration on the flexibility of SD-DeTail on video reconstruction (part 1). We visualized the reconstruction quality of
Dense [18] with/without our SD-DeTail and compare them with prior art [6, 3]. Videos are taken from YouTube.

that our reconstructed shapes are more similar to the given
images, and 80.52% users vote that HiFace reconstructs

more realistic details compared to others. As a compari-
son, the second-best detail reconstruction method [6] has
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Figure A15. Illustration on the flexibility of SD-DeTail on video reconstruction (part 2). We visualized the reconstruction quality of
Dense [18] with/without our SD-DeTail and compare them with prior art [6, 3]. Videos are taken from YouTube.

Table A2. User study results on the reconstructed shape and
details. HiFace achieves the best results in coarse shape and de-
tails according to human perception compared to prior art [6, 18].

Group Best method 2nd best method Other methods

Coarse 54.55% (Ours) 35.06% (Dense [18]) 10.39% ([23, 5, 19, 8])

Detail 80.52% (Ours) 11.69% (DECA [6]) 7.79% ([3, 16, 2, 20])

only 11.69% votes. It demonstrates the superiority of our
methods in reconstructing coarse shapes and details.

C.3. Flexibility of SD-DeTail
We introduce the settings of plugging SD-DeTail into

optimization-based methods such as Dense [18]. Specif-
ically, for a given image, we leverage optimization-based
methods to regress the identity coefficient � and expres-
sion coefficient ⇠, and use our feature extractor in HiFace to
regress the static coefficient '. Then these three coefficients
serve as the input of SD-DeTail to synthesize the realistic
displacement maps. Finally, we integrate the coarse shape

from the optimization-based methods with the synthesized
displacement map to obtain the final detailed shapes. In
Fig. A13, we present additional results to justify the flexi-
bility of SD-DeTail. SD-DeTail can be easily plugged into
previous optimization-based methods and introduces real-
istic details on the coarse shapes to improve the visualized
quality.

In addition, we also compare the reconstruction qual-
ity in the video sequences and further demonstrate that,
given the coarse shape obtained by existing optimization-
based methods, the proposed SD-DeTail has the advan-
tage of achieving realistic detailed results based on the
existing coarse shape. As Fig. A14-A16 show, we per-
form reconstruction on the video sequences by comparing
Dense [18] with/without our SD-DeTail to prior art [6, 3].
Fig. A14-A16 demonstrate that our SD-DeTail significantly
improve the visualized quality compared to the coarse shape
from [18]. Compared to prior art [6, 3], our SD-DeTail cap-
tures subtle and realistic details and outperforms previous
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Figure A16. Illustration on the flexibility of SD-DeTail on video reconstruction (part 3). We visualized the reconstruction quality of
Dense [18] with/without our SD-DeTail and compare them with prior art [6, 3]. Videos are taken from YouTube.

Table A3. User study results on detail and expression transfer. We group the driving images into young people (A) and elder people
(B), and ask artists to score the animation quality of static details and dynamic expressions of the transferred images, corresponding to the
1st and 2nd row of each source image in Fig. A17 and Fig. A18. We report the average scores, median scores, and standard deviation. “5”
indicates the best score while “1” indicates the worst score.

Driving Group A (1-5) B (6-10) All

Source Method Static Dynamic Static Dynamic Static Dynamic
avg. med. std. avg. med. std. avg. med. std. avg. med. std. avg. med. std. avg. med. std.

I
DECA [6] 1.63 1.50 0.72 2.50 2.50 1.05 3.27 3.00 0.65 2.73 2.50 0.80 2.45 2.50 1.07 2.62 2.50 0.93

EMOCA [3] 1.93 2.00 0.82 1.97 2.00 0.92 3.20 3.00 0.62 2.40 2.50 0.74 2.57 3.00 0.96 2.18 2.00 0.85
Ours 4.40 4.50 0.60 4.63 5.00 0.44 4.13 4.00 0.35 4.53 4.50 0.44 4.27 4.00 0.50 4.58 4.50 0.44

II
DECA [6] 1.70 2.00 0.62 2.47 2.00 1.08 3.37 3.00 0.52 3.10 3.00 0.78 2.53 2.75 1.02 2.78 3.00 0.98

EMOCA [3] 2.07 2.00 0.73 2.37 2.00 1.03 3.73 4.00 0.68 2.07 2.00 0.84 2.90 3.00 1.09 2.22 2.00 0.90
Ours 4.17 4.00 0.49 4.80 5.00 0.41 4.30 4.00 0.59 4.47 4.00 0.40 4.23 4.00 0.54 4.63 5.00 0.43

methods by a large margin.

C.4. Detail Animation Comparisons
While previous state-of-the-art methods [6, 3] di-

rectly concatenate the person-specific identity features with
expression-aware features and decode them into a displace-

ment map. In our ablation studies, we have demonstrated
that simply predicting the dynamic details is rather chal-
lenging to achieve satisfactory results (see Fig. 9). Here we
present additional comparisons on detail animation to jus-
tify our claims.

Qualitative Comparisons. In Fig. A17 and Fig. A18, we
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Figure A17. Comparison on face animation (part 1). Given a source image (yellow box), we use the driving images (green box) to drive
its person-specific details and expressions. For each method, we manipulate the static (1st-row), dynamic (2nd-row), or both (3rd-row)
factors. However, DECA [6] (blue box) and EMOCA [3] (orange box) can animate the expression-driven details but lack realistic, and
cannot transfer the static details from the driving images well. As a comparison, HiFace (red box) is flexible to animate details from static,
dynamic, or both factors, and presents vivid animation quality with realistic shapes.

manipulate the static and/or dynamic details of the source
image by assigning the static and/or dynamic codes from
the driving image. Specifically, the static coefficient in Hi-
Face (or called “detail code” in DECA [6] and EMOCA [3])
is encoded from the driving image. The dynamic factor is
based on the expression coefficient in our HiFace, while in
DECA [6] and EMOCA [3], it is based on the “expression
parameter” and “jaw pose”. We present the comparisons of

the animation results in Fig. A17 and Fig. A18.
We can see that the details are not well decoupled in pre-

vious methods. For example, when we manipulate the static
factor to the source image and the driving image is a young
child (e.g., second column), the output shape should have
presented “young” details. However, results in previous
methods still exhibit “noisy” details, which correspond to
“old” wrinkles. It demonstrates that such implicit learning
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Figure A18. Comparison on face animation (part 2). Given a source image (yellow box), we use the driving images (green box) to drive
its person-specific details and expressions. For each method, we manipulate the static (1st-row), dynamic (2nd-row), or both (3rd-row)
factors. However, DECA [6] (blue box) and EMOCA [3] (orange box) can animate the expression-driven details but lack realistic, and
cannot transfer the static details from the driving images well. As a comparison, HiFace (red box) is flexible to animate details from static,
dynamic, or both factors, and presents vivid animation quality with realistic shapes.

is hard to decouple the static and dynamic factors well.
As a comparison, our novelty and insights lie in the

essence of 3DMMs that simplify the 2D-to-3D difficulty
by statistical models. We successfully reconstruct plausi-
ble static and dynamic details by simplifying such difficulty
into feasible regression and interpolation tasks. The details
generated by HiFace are naturally decoupled into static and
dynamic factors for animation. For example, if we animate

the static factor, the facial details present variation among
different age groups, and when we animate the dynamic fac-
tor, the expression-driven details are well transferred (see
“Ours” in Fig. A17 and Fig. A18 from left to right).

User Study. We also present another user study to inves-
tigate the objective evaluation from 5 experienced artists
in estimating the expression and detail transfer quality.



More specifically, given the source images in Fig. A17 and
Fig. A18 (noted as subject I and subject II in Tab. A3), we
ask the artists to mark scores ranging from 1 to 5 (5 indi-
cates the best score) for each driving sample. The scores
are evaluated based on the animation quality w.r.t. the static
details and the dynamic expressions from the driving im-
ages. The driving images are classified into: A. the young
group (1-5 images) and B. the elder group (6-10 images).
The quantitative results are summarized in Tab. A3.

According to Tab. A3, we demonstrate that our recon-
struction and animation results are better aligned with hu-
man perception. For the static factor, we can see the re-
sults of previous methods [6, 3] present an imbalanced
distribution, i.e., when the driving images are young peo-
ple’s, the score is, in general, worse than that of the elder
group. As for the expression transfer, previous methods
reach worse scores when the driving images contain ex-
treme expressions (corresponding to a larger standard de-
viation in Tab. A3). As a comparison, our method presents
higher scores with smaller variances among different age
groups, which demonstrates the power of our model in
transferring novel expressions and details.

D. Limitations & Future Work
This paper proposes a novel approach to reconstructing

animatable details from monocular images. While we man-
age to synthesize realistic details and demonstrate higher
accuracy compared to previous state-of-the-art, our work
still has limitations. We pinpoint these challenges in the
3D face community and leave them for future work.

Facial Appearance Model. We use the vanilla albedo
3DMM to linearly represent the facial appearance. While
we focus more on the geometry shape, such albedo inher-
ently lacks details and indirectly influences the training of
HiFace. In the future, we plan to integrate the diffuse model
and spectral model to present high-fidelity facial appearance
and extend our HiFace with photo-realistic textures.

Reconstruction Quality. While we achieve state-of-the-
art reconstruction quality in the REALY [12] benchmark
in terms of the overall quality in Tab. 1. We notice Hi-
Face does not perform the best in the mouth and cheek,
which are highly emotional and structural regions. To ad-
dress this problem, we leave it for future work to incorpo-
rate the emotion-aware perceptual loss and structure-aware
constraints in these regions to further improve the recon-
struction quality of HiFace.

Displacement Prior. We demonstrate the necessity to
leverage the statistical model to constrain the displacement
distribution. However, due to the high expense of captur-
ing large-scale and high-quality displacements for training
a non-linear model. We choose the common practice of lin-
ear PCA model to build displacement bases for it is easy to

implement and data amount friendly. We trade off the learn-
ing difficulty and personalized details (e.g., nevus) through
the statistical model. Therefore, it is still challenging to re-
cover pore-level details. In addition, we notice that the im-
balanced data (i.e., a majority of young scans and images
with fewer children and elders) also influence the represen-
tation of our model. In the future, we plan to capture and
synthesize more class-balanced data to train a non-linear
model and leverage the versatile generative models to re-
construct high-resolution displacement maps for more real-
istic 3D faces.

Evaluation on Facial Animation. We present the visual-
ized comparisons in transferring facial expressions and their
details. However, we can only refer to quantitative compar-
isons for missing such a benchmark to estimate the transfer
accuracy. We leave it for future work to construct a bench-
mark to evaluate the quality of expression transfer.

E. Potential Social Impact
While this paper successfully reconstructs 3D shapes

with animatable details from the monocular images, it is
not intended to create content that is used to mislead or de-
ceive. Therefore, this paper does not raise disinformation or
immediate security concerns. However, like other related
3D face reconstruction and animation techniques, it could
still potentially be misused for impersonating humans. We
condemn any behavior to create misleading or harmful con-
tent of real persons. We encourage researchers in the 3D
face community to consider the questions about prevent-
ing privacy disclosure before applying the model to the real
world.
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