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In this supplement, we first provide additional ex-
periments (Sec. A1). We follow with details of our
implementation (Sec. A2), including further descrip-
tions of the model architecture and training process,
as well as hyperparameters. We then discuss experi-
mental details (Sec. A3). Lastly, we consider artifacts
and limitations (Sec. A4) that may be targets for fu-
ture work. We encourage readers to view the accom-
panying supplemental videos, which contain additional
visual results.

A1. Additional experiments & ablations

Figure A1: New views generated from out-of-
distribution poses. Extreme zooms and large trans-
lations may lead to unrealistic views.

A1.1. Extrapolation to unseen camera poses.

In the ShapeNet dataset, cameras are located on a
sphere, point towards the centers of the objects and
have the same “up” direction during training. We in-
vestigate the results of our method when querying out-
of-distribution poses at test time in Fig. A1. From

∗Equal contribution.
†Work was done during an internship at NVIDIA.

a fixed pose, we generate a zoom, a one-dimensional
translation of the camera, and a camera roll. Although
novel views deteriorate with large deviations from the
training pose distribution, the 3D prior present in our
method can reasonably tolerate small extrapolations.

A1.2. Percentile results based on LPIPS

Fig. A2 shows our synthesized results on ShapeNet
ordered by the percentile of the LPIPS [31] score, with
examples that scored best according to the metric at
the top and examples that scored worst at the bottom.
We compute predictions for the same input and output
views across the entire test set. To reduce the effects of
randomness, we evaluate 9 realizations for each input,
and use only the median image/score when ordering
our results. Our method produces consistently sharp
outputs (even at the 10th percentile) and maintains
overall textures and shapes from the input image.

A1.3. Handling multiple input images

Fig. A3 shows our generated novel views when more
than one image is given as the input conditioning infor-
mation. When only 1 view is given from the back side
of the car, the model has the freedom to choose multiple
plausible completions for the unseen front side of the
car, leading to a high standard deviation (high uncer-
tainty). Adding 2 or 3 views reduces uncertainty (low
standard deviation), and the model generates a novel
view that is compatible with multiple input views.

A1.4. Effect of distance to input view

As Fig. A4 demonstrates, nearby views provide more
valuable information than distant views, thus reduc-
ing variance in the output rendering. Consequently,
by conditioning autoregressively on nearby views, we
narrow the conditional distribution of possible out-
puts, improving geometric consistency compared to
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Figure A2: Our synthesized novel views sorted by the
percentile of the LPIPS [31] score, with results that
scored best according to LPIPS at the top.

non-autoregressive conditioning.

A1.5. Classifier-free guidance

Recently, [9] suggested classifier-free diffusion guid-
ance technique to effectively trade off diversity and
sample quality. At training, we implement classifier-
free guidance by dropping out the feature image with
10% probability; in its place, we replace this condi-
tioning image with a sample of Gaussian noise. At
inference, we can linearly interpolate between uncon-
ditional and unconditional predictions of the denoised
image in order to boost or decrease the effect of the
conditioning information.

Fig. A5 shows the effect of classifier-free guidance [9]
(CFG) when making predictions in isolation. In gen-
eral, positive classifier-free guidance increases the ef-
fect of the conditioning information and improves sam-
ple quality. With guidance = 0, our model produces

Figure A3: Effect of varying the number of input views.
Increasing the number of input views reduces uncer-
tainty, decreasing the pixel-wise standard deviation in
novel renderings. Dark pixels in the third row rep-
resent higher standard deviation and indicate greater
variation in the realizations.

Figure A4: Average pixel variance of generated views
vs. the distance between the query camera and the
input camera. Input views close to the camera are
valuable—the model can directly observe many of the
details it must transfer to the output rendering. Input
views distant to the camera are more ambiguous—the
model is tasked with generating large parts of the ren-
dering from scratch. As the conditioning information
gets increasingly ambiguous, novel views get increas-
ingly diverse. Pixel variance is calculated across 50
renderings per pose. Red bars indicate the empirical
standard deviation of the moving average.

greater variation of generated views (note the different
realizations of the passenger-side door). However, we
would consider some of these realizations to be unlikely
given the input. Increased CFG strength narrows the
distribution of possible outputs, and while we would
consider such a set of realizations to be less diverse,
each one is of high fidelity. Excessively high guidance
strength begins to introduce artifacts and color satura-
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Figure A5: Independent (single-frame input) NVS with
various classifier-free guidance (CFG) strengths. For
each level of CFG, we show three realizations. With
guidance = 0, we sample a “diverse” set of novel views,
each plausible, but with variations (e.g. doors). Higher
guidance strength reduces diversity but improves sam-
ple quality. Excessively high guidance begins to intro-
duce saturation and visual artifacts. Negative guid-
ance upweights the unconditional contribution; with
guidance = −1, generation is unconditional.

Figure A6: Autoregressive sequence generation with
varying CFG strength. With low guidance, we can
generate extended autoregressive sequences with little
deterioration over time. Higher guidance tends to carry
over errors from previous frames, which gradually de-
grades the quality of subsequent generations.

tion. Negative guidance upweights unconditional pre-
diction; guidance = −1 produces unconditional sam-
ples without influence from the input image. In gen-
eral, when making independent novel view predictions,
we find moderate levels of CFG to be beneficial. How-
ever, as described in Sec. A1.6, CFG has an adverse
effect on the quality of autoregressively generated se-
quences. As a default, we refrain from using CFG in

our experiments.

A1.6. Extended autoregressive generation

Fig. A6 shows autoregressively generated sequences
made with varying levels of classifier-free guidance.
When making long autoregressive sequences, the abil-
ity to suppress errors and return to the image man-
ifold is an important attribute. Unchecked, gradual
accumulation of errors could lead to progressive dete-
rioration in image quality. Intuitively, unconditional
samples do not suffer from error buildup, since uncon-
ditional (CFG = −1) samples make use of no informa-
tion from previous frames. On the other end of the
spectrum, highly conditioned (CFG >> 0) samples
should be more likely to suffer from error accumula-
tion because they emphasize information from previ-
ous frames. A happy medium between these two ex-
tremes allows the model to use information from pre-
vious frames while preventing undesired error accumu-
lation. Empirically, we find that while small positive
guidance can reduce frame-to-frame flicker, it enhances
the model’s tendency to carry over visual errors from
previous frames. We observe saturation buildup and
artifact accumulation to be significant roadblocks to
using CFG when synthesizing long video sequences.
For these reasons, we default to using CFG = 0, which
we found to enable autoregressive generation of long
sequences without significant error accumulation. A
solution that enables higher CFG weights for autore-
gressive generation may make a valuable contribution
in the future.

A1.7. Alternative autoregressive conditioning
schemes

Baseline strategy When generating a sequence au-
toregressively, there are many possible strategies, each
with a set of tradeoffs. To produce the visual results
presented in our work, we used the following baseline
strategy, with minor variations for different datasets.
As described in the main paper, our baseline strategy
is to condition our model on the input image(s), the
most recently generated rendering, and five previously
generated images, selected at random.

For Matterport3D, when generating long sequences,
we select the five previously generated frames from a
set of only the 20 most recently generated frames; we
additionally condition on every 15th previously gener-
ated frame.

For CO3D, we use the two-pass conditioning method
discussed below to improve temporal consistency.

Alternative strategies and tradeoffs As de-
scribed in the main paper, our baseline autoregressive
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Figure A7: Qualitative comparison for single-view novel view synthesis on CO3D [19] Hydrants.

Figure A8: Additional qualitative comparisons against baselines on ShapeNet [2].
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Figure A9: Additional samples from our method for
short-range NVS on the Matterport3D Dataset [1].

strategy can induce noticeable flickering. One way to
reduce flickering is to condition on only the previous
frame. Doing so almost completely eliminates frame-
to-frame flicker. However, this strategy sacrifices long-
term consistency and does little to prevent drift; new
renderings might not be consistent with frames ren-
dered at the start of the sequence. By contrast, to pro-
mote long-term consistency, one could avoid condition-
ing on previously-generated frames at all and instead
condition on only the input image(s). Because drift
is the result of error accumulation from conditioning
on previous generations, this strategy eliminates po-
tential for drift. However, it suffers from short-term
inconsistency (i.e. frame-to-frame flicker). We found
our baseline strategy, which conditions on the inputs,
the most recent rendering, and several previous ren-
derings, to be a good compromise between long-term
and short-term consistency. The number of previously
generated images we condition upon affects the behav-

Figure A10: Our default autoregressive conditioning
strategy, which aggregates information from multiple
views within a feature volume, typically performs at
least on par with stochastic view conditioning [28] in
geometric consistency, but requires many fewer steps
of diffusion to remain effective. Here, we compare
COLMAP reconstructions of a sequenced produced by
feature aggregation, using 25 steps of denoising, against
a sequence produced by stochastic conditioning, using
256 steps of denoising.

ior. Because we equally weight the contribution of all
images we condition upon, increasing the number of
previous renderings (which are sampled uniformly from
the generated sequence) reduces the relative contribu-
tion of the most recent rendering. Increasing the size of
this “buffer” of previously-generated conditioning im-
ages thus improves long-term consistency at the cost of
short-term consistency; reducing the size of the buffer
has the opposite effect.

One way to suppress flickering is to generate frames
in two passes, where in the second pass, we condi-
tion on the nearby frames from the first pass in a
sliding window fashion. Empirically, conditioning on
only the nearest 4 frames during the second pass re-
sults in videos with reduced flicker, at the expensive of
higher inference computation. However, unless other-
wise noted, we render all videos shown with our base-
line autoregressive strategy, i.e. without these alterna-
tive methods.

A1.8. Stochastic Conditioning

To demonstrate the effectiveness of our autoregres-
sive synthesis method, which aggregates conditioning
feature volumes from autoregressively selected gen-
erated images, we compare to an adaptation of the
stochastic conditioning method proposed in 3DiM [28].
We adapt the stochastic conditioning method to our ar-
chitecture by replacing the feature volume aggregation
from autoregressively selected generated images with
a single feature volume generated from an image ran-
domly sampled from all previously generated images.
As done in 3DiM, the number of diffusion denoising
steps is increased significantly and the randomly sam-
pled image is varied at each individual step of denois-
ing. Each generated final image is then added to the set
of all previous images and can be used as conditioning
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Figure A11: If perfect view consistency is necessary,
one can combine our trained diffusion model with Score
Distillation Sampling [18] to obtain view-consistent ra-
diance fields.

in subsequent view generations. This alternative form
of conditioning is also able to provide the model with
information from many generated views, but they are
processed independently with each step of denoising,
rather than together after a feature volume aggrega-
tion.

In Fig. A10, we show 3D reconstruction results from
sequences of images generated by our autoregressive
synthesis method and with our adaptation of stochas-
tic conditioning [28]. Here, we find that our autore-
gressive synthesis method performs slightly better than
stochastic conditioning in terms of 3D consistency of
generated frames as seen by the COLMAP 3D recon-
struction and corresponding Chamfer distance. Addi-
tionally, we are able to generate novel views signifi-
cantly faster – in practice, stochastic conditioning re-
quires 256 denoising steps to generate each novel view
while our method only requires 25, leading to a 10x
improvement in speed.

A1.9. 3D Neural Field Fitting with Score Distillation
Sampling

Fig. A11 demonstrates that we can fit view-
consistent neural radiance fields [15] using our trained
diffusion model through Score Distillation Sam-
pling [18]. The application of Score Distillation Sam-
pling to an image-conditioned diffusion model has been
explored in recent work [14, 6, 33]. We base our imple-
mentation of this experiment on top of Threestudio [7].

A1.10. Additional Common Objects in 3D results

We provide additional results for single-view novel
view synthesis (NVS) with real-world objects for CO3D
Hydrants in Fig. A7. We compare against View-
Former [13], which has demonstrated success in few-
shot NVS on CO3D, and PixelNeRF [30]. However, we
note that ViewFormer is not a 1:1 comparison for two
reasons: 1. ViewFormer operates with object masks,
whereas our method operates with backgrounds. 2.

ViewFormer train/test splits did not align with other
methods. For this figure, and for comparison videos,
we selected objects that were contained in our test split
but were part of ViewFormer’s train split. Despite
these disadvantages, our method demonstrates a com-
pelling ability to plausibly complete complex scenes.

A1.11. Additional ShapeNet results

Fig. A8 provides additional visual comparisons on
the ShapeNet [2] dataset against baselines. In general,
our method renders images with sharper details and
higher perceived quality than PixelNeRF, while better
transferring details from the input image than View-
Former and EG3D. In this figure, renderings from our
method are selected from autoregressively-generated
sequences.

A1.12. Additional Matterport3D Results

Fig. A9 presents additional trajectories for single-
view, autoregressive generation from our model on the
Matterport3D [1] dataset.

A2. Implementation details

We implemented our 3D-aware diffusion models us-
ing the official source code of EDM [11], which is avail-
able at https://github.com/NVlabs/edm. Most of
our training setup and hyperparameters follow [11]; the
exceptions are detailed here.

Feature volume encoder, T . Our encoder back-
bone is based on DeepLabV3+ [3]. We use a Pytorch
reimplementation [10] available at https://github.

com/qubvel/segmentation_models.pytorch, and
ResNet34 [8] as the encoder backbone. We found
unmodified DeepLabV3+, to struggle because the
output branch contains several unlearned, bilinear
upsampling layers; this resolution bottleneck makes it
difficult to effectively reconstruct fine details from the
input. We replace these unlearned upsampling layers
with learnable convolutional layers and skip connec-
tions from previous layers. We disable batchnorm and
dropout throughout the feature volume encoder. The
feature volume encoder expects as input a 3×128×128
image; it produces a (16 × 64) × 128 × 128 feature
image, which we reshape into a 16 × 64 × 128 × 128
volume.

Multiview aggregation. We aggregate information
from multiple input views by predicting a feature vol-
ume Wi for each input image independently, project-
ing the query point into each feature volume, sampling
a separate feature vector from each feature volume,

6

https://github.com/NVlabs/edm
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch


and mean-pooling across the sampled feature vectors to
produce a single aggregated feature. We experimented
with two alternative aggregation strategies: 1. max-
pooling, and 2. weighted average pooling, where the
feature volumes have an additional channel that is in-
terpreted as a weight by a softmax function. We found
these alternative aggregation strategies to perform sim-
ilarly to mean-pooling.

MLP, f . We use a two-layer ReLU MLP to aggre-
gate features drawn from multiple input images. Our
MLP has an input dimension of 16, two hidden layers
of dimension 64, and an output dimension of 17, which
is interpreted as a 1-channel density τ and a 16-channel
feature c. We additionally skip the MLP’s input fea-
ture to the output feature.

Rendering. We render feature images from the
model using neural volume rendering [15] of fea-
tures [16], from the neural field parameterized by the
set of feature volumes W and the MLP f . For compu-
tational efficiency, we render at half spatial resolution,
i.e. 64 × 64 and use bilinear upsampling to produce a
128× 128 feature image. We use 64 depth samples by
default, scattered along each ray with stratified sam-
pling. We do not use importance sampling.

UNet, U . The design of U is based on
DDPM++ [27], using the implementation and
preconditioning scheme of [11]. U accepts as input 19
total channels (a noisy RGB image, plus a 16-channels
feature rendering) of spatial dimension 1282. It
produces a 3-channel 1282 denoised rendering. For
experiments shown in the manuscript, our models
contain five downsampling blocks with channel multi-
pliers of [128, 128, 256, 256, 256]. As in [27], we utilize
a residual skip connection from the input to U to each
block in the encoder of U .

Training. We use a batch size of 96 for all training
runs, split across 8 A100 GPUs, with a learning rate of
2× 10−5. During training, we sample the noise level σ
according to the method proposed by [11] by drawing
σ from the following distribution:

log(σ) ∼ N (Pmean, P
2
std). (1)

We use Pmean = −1.0, Pstd = 1.4. During train-
ing, we randomly drop out the conditioning informa-
tion with a probability 0.1 to enable classifier-free guid-
ance. In place of the rendered feature image, we insert
random noise.

Our dataset is composed of posed multi-view images,
where for each training image, we are given the 4 × 4
camera pose matrix, the camera field of view, and a
near/far plane. For all experiments, we specify a global
near/far value for each dataset, where the values are
chosen such that a camera frustum with the chosen
near/far planes adequately covers the visible portion
of the scene. For ShapeNet, near/far = (0.8, 1.8); for
MP3D, near/far = (0., 12.5); for CO3D, near/far =
(0.5, 40). We found our method to be fairly robust to
the chosen values of near/far planes.

For ShapeNet, we train until the model has pro-
cessed 140M images, which takes approximately 9 days
on eight A100 GPUs. For MP3D, we train for 110M im-
ages, which takes approximately 7 days on eight A100
GPUs. For CO3D, we train for 170M images, which
takes approximately eleven days on eight A100 GPUs.

Augmentation. During training, we introduce two
forms of augmentation. First, with probability 0.5, we
add Gaussian white noise to the input images. For in-
put images in the range [−1, 1], we sample the standard
deviation of the added noise uniformly from [0, 0.5].
Second, we apply non-leaking augmentation [11] to U .
With probability 0.1, we apply random flips, random
integer translations (up to 16 pixels), and random 90º
rotations, where the transformations are applied to the
input noisy image, the input feature image, and the tar-
get denoised image. We condition U with a vector that
informs it of the currently applied augmentations; we
zero this vector at inference.

Inference. We use the deterministic second order
sampler proposed in [11] at inference. As a default,
we use N = 25 timesteps, with a noise schedule gov-
erned by σmax = 80, σmin = 0.002, and ρ = 7, where
ρ is a constant that controls the spacing of noise noise
levels. The noise level at a timestep i is given in Eq. 2:

σi<N =

(
σmax

1
ρ +

i

N − 1

(
σmin

1
ρ − σmax

1
ρ

))
. (2)

Rendering an image from scratch with 25 denois-
ing steps takes approximately 1.8 seconds per image at
inference on an RTX 3090 GPU.

“Production” settings for CO3D. For rendering
videos of CO3D, we use more computationally expen-
sive “production” hyperparameters to obtain better
image quality. Seeking better image quality and detail,
we use 256 denoising steps instead of the default 25 de-
noising steps. Seeking better temporal consistency, we
increase the number of samples per ray cast through
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the latent feature field, from 64 to 128; we also use the
two-pass form of autoregressive conditioning described
in Sec. A1.7.

A3. Experiment details

A3.1. Evaluation details

FID Calculation. We compute FID by sampling
30,000 images randomly from both the ground truth
testing dataset and corresponding generated frames.
We use an inception network provided in the Style-
GAN3 [12] repository for computing image features.

KID Calculation. We compute KID by sampling
all images from both the ground truth testing dataset
and corresponding generated frames. We use the im-
plementation of clean-fid [17], available at https://

github.com/GaParmar/clean-fid.

COLMAP Reconstructions. We compute
COLMAP reconstructions using frames from ren-
dered video sequences. We provide the ground-truth
camera pose trajectory as input for all reconstructions.
For ShapeNet evaluations, we additionally compute
masks by thresholding images to remove white pixels.
We leave all settings at their recommended default.

Chamfer Distance Calculation. For all datasets,
we compute the bi-directional Chamfer distance be-
tween the reconstructed point cloud from synthesized
images to the reconstructed point cloud from ground
truth images. Additionally, for CO3D, we translate
and scale the reconstructed point clouds to lie within
the unit cube.

A3.2. Baselines

PixelNeRF [30]. We compare to PixelNeRF for
the ShapeNet and CO3D single-image novel view syn-
thesis benchmark. For ShapeNet, we use the offi-
cial implementation and pre-trained weights for single-
category (car), single-image, ShapeNet novel view syn-
thesis evaluation provided at: https://github.com/

sxyu/pixel-nerf. We follow the protocol described in
the original PixelNeRF paper and SRNs [26] for data
pre-processing. We use the provided dataset and splits
in the PixelNeRF repository for training and testing
of both our method and PixelNeRF (this dataset is
slightly different from that used in the SRNs paper due
to a bug; see PixelNeRF supplementary information).
We follow the same protocol for evaluation as we do for
our method and SRNs: view 64 is used as input, and
the remaining 249 views are synthesized conditioned
on this. For CO3D, we train PixelNeRF from scratch

using our train/test splits and using the recommended
hyperparameters.

ViewFormer [13]. We compare to ViewFormer on
the ShapeNet single-image novel view synthesis bench-
mark and qualitatively on single-image novel view syn-
thesis for CO3D. We received the data and results
for single-image novel view synthesis for the entire
ShapeNet testing set from the authors. We compute
metrics using their provided ground truth data and
synthesized results. The training and testing splits are
the same as those used in our method and in Pixel-
NeRF. They use the previously introduced protocol for
single-image novel view synthesis evaluation: view 64
is used as input, and the remaining 249 views are syn-
thesized conditioned on this. For CO3D, we instead
condition on the first frame from each shown sequence,
and generate a video based on this conditioning infor-
mation. We use provided source code from the offi-
cial repository at: https://github.com/jkulhanek/

viewformer. We do not generate quantitative met-
rics, as ViewFormer operates on masked and center-
cropped images. Additionally, the images, which we
use for comparison are in the training set for View-
Former, while for our method they are in the test set.

Look Outside the Room [20]. We compare
against Look-outside-the-room (LOTR), the cur-
rent state-of-the-art method on novel view synthe-
sis on Matterport3D (MP3D)[1] and RealEstate10K
[32] datasets. For LOTR, we obtained the
pretrained weights for the MP3D dataset from
their official codebase https://github.com/xrenaa/

Look-Outside-Room. We match LOTR’s data prepa-
ration methodology, including identical train/test
splits, and we use LOTR’s implementation for generat-
ing multi-view images from MP3D RGB-D scans. For
testing their method, we prepare a common set of 200
input images from the test split with the trajectories
and ground truth images for the next 10 frames for each
input. Then, we run the LOTR method on the given
input using the code from their Github repository, us-
ing 3 overlapping frame windows, as stated in their
paper. We run LOTR on the next 10 frames, given
the input frame, and measure the metrics against the
ground truth.

Additional Baselines for MP3D To further eval-
uate our method’s effectiveness on the novel-view syn-
thesis task on MP3D scenes, we compare against addi-
tional baselines of GeoGPT [22] and SynSin [29]. Note
that these two baselines, along with another recent
work of PixelSynth [21], have been already shown to
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underperform against LOTR [20]. Since GeoGPT does
not provide pre-trained models or rendered images for
MP3D, we inquired the authors of LOTR for the im-
ages they used for the benchmarks. The acquired NVS
images of GeoGPT and SynSin are rendered by the
exact same protocol as our experiments, except that
they proceeded five frames from the initial input im-
ages for 200 sequences (thus we have 1,000 images in
total). We note that the trajectories used for these
acquired images are different from the trajectories we
used for our experiments because the trajectories are
generated randomly via the Habitat embodied agent
simulation [24]. However, at 1000 trajectory samples,
we believe our comparisons are statistically significant.
The final numbers we computed show similar trends to
those reported in the LOTR paper, further confirming
the validity of the comparisons. Both qualitatively and
quantitatively, we observe that our novel-view render-
ings are significantly more desirable.

A3.3. Dataset details

ShapeNet [2]. We extensively evaluate our method
on the ShapeNet dataset. The full ShapeNet dataset
contains different object categories, each with a syn-
thetically generated posed images in pre-defined train-
ing, validation, and testing sets. In our work, we specif-
ically evaluate with the “cars” category, and focus on
single-image novel view synthesis. We use the version
of the dataset provided in PixelNeRF [30] for consis-
tency in training and evaluation, keeping all frames in
the dataset at 1282 resolution and doing no additional
pre-processing. As described in the main paper, the
training set contains 2,458 cars, each with 50 render-
ings randomly distributed on the surface of a sphere.
The test split contains 704 cars, each with 250 rendered
images and poses on an Archimedean spiral. During
the training of our method, we use the defined training
split, randomly sampling between one and three input
frames with the objective of synthesizing a randomly
selected target frame for a specific object instance. In
evaluation, we use the defined testing split, use im-
age number 64 as input, and synthesize the other 249
ground truth images. We note that since these im-
ages are synthetically generated at only 1282, they lack
backgrounds and fine detail. However, the accuracy of
poses in the constrained environment and consistent
evaluation method between baselines allows for eas-
ily providing quantitative benchmarks for single-image
novel view synthesis.

Matterport3D [1]. We showcase our algorithm on
a highly complex, large-scale indoor dataset, Matter-
port3D (MP3D). MP3D contains RGB-D scans of real-

world building interiors. Scenes are calibrated to met-
ric scale, and thus there is no scale ambiguity. We pre-
process MP3D scans into a dataset of posed multi-view
images following the procedure detailed in LOTR [20]
and SynSin [29]. Specifically, we generate the image se-
quences by simulating a navigation agent in the room
scans, using the popular Habitat [24] API. We ran-
domly select the start and end position within the
MP3D scenes and simulate the navigation towards the
goal via Habitat. The agent is only allowed to take lim-
ited actions, including going forward and rotating 15
degrees. During training, we randomly sample a target
frame and then select 1 to 3 random source frames in
the neighborhood of 20 frames for conditioning.

Common Objects in 3D [19]. We validate our
method on a real-world dataset: Common Objects in
3D (CO3D). The CO3D dataset consists of several cat-
egories. We train on CO3D Hydrants, which contains
726 scenes. The average scene consists of around 200
frames of RGB video, object masks, poses, and semi-
sparse depth. We note that the CO3D dataset is quite
unconstrained: even across scenes within a category,
aspect ratio, resolution, FOV, camera trajectory, ob-
ject scale, and global orientation all vary. Addition-
ally, we note that the dataset is noisy, with several
examples of miscategorized objects and numerous ex-
tremely short or low-quality videos. Such noise adds
to the challenge of single-image NVS.

In preparing data, we first center-crop to the largest
possible square, then resize to 1282 using Lanczos re-
sampling. We adjust the camera intrinsics to reflect
this change. We also seek to normalize the canonical
scale of scenes across the dataset. To do so, we examine
the provided depths within each scene, and consider the
depth values that fall within the object segmentation
mask. For each image, we calculate the median value
of the masked depth. Taking the mean of these median
values across the scene gives us a rough approximation
of the distance between the camera and object. We
adjust the scale of the scene so that this camera-object
distance is identical across every scene in the dataset.

To help resolve scale, which is highly variable across
the dataset, and to provide information parity with
PixelNeRF, which has access to a global reference
frame, we provide our feature encoder, T , with the lo-
cation of the global origin. In addition to each input
RGB image, we concatenate a channel that contains a
depth rendering of the three coordinate planes, as ren-
dered from the input camera. We modify T to accept
the four-channel input. We find this input augmenta-
tion to improve our model’s ability to localize objects.
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A4. Discussion

A4.1. Alternative approaches

GAN-based generative novel view synthesis.
We have presented a diffusion-based generative model
for novel view synthesis, but in principle, it is pos-
sible to construct a similar framework around other
types of generative models. Generative Adversarial
Networks [5] (GANs), are a natural fit, and adversarial
training could drop in to replace our diffusion objec-
tive with minor changes. While recent work [4] has
demonstrated that diffusion models often outperform
GANs in mode coverage and image quality, GANs have
a major advantage in speed. Future work that aims for
real-time synthesis may prefer a GAN-based 3D-aware
NVS approach.

Transformer-based, geometry-free multi-view
aggregation strategies. A promising alternative to
explicit geometry priors, such as the type we have pre-
sented in this work, is to instead make use of pow-
erful attention mechanisms for effectively combining
multiple observations. Scene Representation Trans-
formers [23] utilize a transformer-based approach to
merge information from multiple views, which is ef-
fective for NVS on both simple and complex scenes.
We explored an SRT-based variant of Γ, which would
forego explicit geometry priors for a transformer and
light field [25] based conditioning scheme. However,
we had difficulty achieving sufficient convergence and
in justifying the additional compute cost. Neverthe-
less, related approaches could be a promising area for
future study.

A4.2. Limitations

We believe our method to be a valuable step towards
in-the-wild single-view novel view synthesis but we ac-
knowledge several limitations. While we demonstrate
our method to be competitively geometrically consis-
tent, it is not inherently 3D or temporally consistent.
Noticeable flicker and other artifacts are sometimes vis-
ible in rendered sequences.

While our model generally produces plausible ren-
derings, it may not always perfectly transfer details
from the input. On ShapeNet, this sometimes mani-
fests as an inability to replicate the angle of car tires
or the style of windows across the line of symmetry; on
more complex datasets, the model sometimes struggles
to transfer fine details. We use a relatively lightweight,
ResNet-backed Deeplab feature encoder. A more pow-
erful encoder, potentially one that makes use of at-
tention to improve long-range information flow, may
resolve these issues.
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