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The following materials are provided in this supplemen-
tary file:

• We first present our proposed strategy to facilitate ex-
ploration and assist in network training in Section 4.2
of the main paper.

• We describe more details about synthetic rendering
and real-world equipment setup in Section 4.3 of the
main paper.

• We provide real-world experimental results in addition
to Section 5.3 of the main paper.

• We elaborate more details about the ablation studies in
Section 5.4 of the main paper.

• We conduct an experiment to compare ReLeaPS with
other illumination planning approaches using 10 lights
with CNN-PS backbone.

• We discuss other properties of ReLeaPS, including
time efficiency, limited number of lights, reward de-
sign for external factors, and adaptation to different PS
backbones.

• We capture a short video clip that illustrates the online
illumination planning process.

7. Appendix
7.1. Epsilon One-Step Brute-force Exploration

Epsilon greedy exploration strategy is the common ex-
ploration strategy in reinforcement learning (RL). As shown
in Fig. 6, the agent explores the environment with a random

Project page: https://jhchan0805.github.io/ReLeaPS
† Equal contributions. ‡ Corresponding author.

Agent

Exploration Exploitation Brute-force Exploitation

Agent

Random 
action

Single-step 
brute force

Best action 
from network

Best action 
from network

𝟏 − 𝜺𝜺 𝟏 − 𝜺𝜺

(a) Epsilon greedy exploration (b) Epsilon brute-force exploration

Figure 6. Differences between (a) Epsilon-greedy and (b) Ep-
silon Brute-Force strategy based on the prior from the photometric
stereo [9].

action of probability epsilon ϵ and the best-known action
with probability 1 − ϵ. However, this random exploration
can be inefficient and time-consuming which requires a lot
of exploration samplings to obtain a plausible result.

We propose an alternative approach to replace the
random exploration with a one-step brute-force method.
Specifically, given the state St = {It,Lt} and F light di-
rections for the candidate action At+1, we brute-forcely try
one out of F candidate lights and the corresponding im-
age observation as {l′, I ′} to build a new state St+1 =
{It+1,Lt+1}. Under this trial, we apply a Lambertian pho-
tometric stereo (i.e., the least square) method [9] as the
function PS(It+1,Lt+1) for computing the surface normal
N efficiently and compare with ground truth normal Ñ . If
the angular error by adding {l′, I ′} is the smallest over all
of the F brute-force trials, we set l′ as the optimal RL action
in the next single step.

We conduct the one-step brute-force exploration with
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Figure 7. Our illumination equipment. It has two axes to con-
trol the pitch and axial rotation angularly. A high-power LED is
mounted on the robot arm, which can move into any location of
the upper hemisphere, and a convex lens is placed in front of the
LED to provide distant illumination. Four shiny balls are placed
around the target for calibrating the light directions.

probability epsilon ϵ. As the training step increases, we
gradually reduce the ϵ probability so that the agent chooses
the light direction learned from the network. Compared to
random exploration, this approach provides a more efficient
exploration strategy by using the photometric stereo solu-
tion [9].

7.2. Detail of Rendering the Synthetic Dataset

In this paper, our training involves examining the com-
plex light transport phenomena that occur in real-world sce-
narios, including inter-reflection, specular highlights, and
cast shadows. To create a training dataset that accurately
reflects these phenomena, we employ a physically-based
ray-tracing renderer to generate a synthetic dataset with the
Cook-Torrance [1] reflectance model while also consider-
ing global illumination effects, such as cast shadows and
inter-reflections. Through the use of this physically-based
synthetic dataset, we are able to comprehensively address
generalized photometric stereo and develop an improved il-
lumination planning strategy during the implementation of
RL techniques.

7.3. Equipment Setup for Real-World Experiment

As shown in Fig. 7, we build an illumination equipment
with a concentric equidistant design that allows for omnidi-
rectional illumination and a moveable light source to eval-
uate the effectiveness of ReLeaPS. The concentric design
ensures the light source is located on top of a hemisphere
surface, whereas the light is placed opposite to the camera’s
field of view (i.e., negative Z-axis in the general case).

Our illumination equipment incorporates two rotation
axes, enabling pitch and axial rotations of the light source
to emit light toward the target from any direction sampled
on the visible hemisphere with high precision control of an-
gular rotation. To approximate distant light in photomet-
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Figure 8. Objects captured by our real-world equipment: (a) LI-
ONHEAD, (b) MONSTER, and (c) TWOFISHES.

ric stereo, we attach a focus lens in front of the LED light
source and put it 50 cm far from the target object.

The DaHeng Image MER-503-36U3C camera with a 50
mm lens and an original resolution of 2448×2048 is utilized
to capture observed images of the object, which are saved in
a raw format (linear radiometric response) with a cropped
resolution of 1001 × 1001. The camera is placed 50 cm
far from the target object. The camera’s exposure time is
adjusted from 1 ms to 4 ms depending on the material’s
reflectivity to obtain a high dynamic range (HDR) image
observation under each light direction.

7.4. Qualitative Comparison on Real Dataset

Based on the setup introduced in Section 7.3, we capture
three objects, LIONHEAD, MONSTER, and TWOFISHES as
shown in Fig. 8. In Fig. 9, we present the estimated surface
normals and angular error maps for comparing our proposed
method with other illumination planning methods [2, 7].

As described in Section 5.3 using the LIONHEAD data
in the main paper, our method yields superior results com-
pared to other illumination planning methods for general-
ized photometric stereo. In this supplementary file, we
further compare the performance of these methods on the
object MONSTER and TWOFISHES, which exhibit gaps on
their surfaces. From Fig. 9, it is evident that DC05 [2] fails
to properly recover the gaps on the object surfaces, resulting
in a large angular error. Although TK22 [7] can recover the
gaps on the surface, our RL-based illumination planning ap-
proach achieves a lower mean angular error than TK22 [7].

7.5. Ablation Studies

This section provides ablation studies to analyze the
individual contributions of these components (i.e., non-
Lambertian reflectance, sparse-to-dense reward strategy,
and dualling DQN network design in our online illumina-
tion planning method) to the overall performance of Re-
LeaPS for illumination planning in generalized photometric
stereo. The evaluation settings and testing set are consistent
with the ablation analysis in Section 4 of the main paper.

ReLeaPS w/ Lambert. The conventional illumination
planning methods [2, 7] in photometric stereo is limited
to Lambertian surfaces and rely on simplistic analytical as-
sumptions. In contrast, our proposed approach provides a
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Figure 9. Qualitative comparison of recovered surface normals and error maps for (left) MONSTER and (right) TWOFISHES captured using
our equipment under different illumination planning methods (i.e., DC05 [2], TK22 [7], and Ours) with increasing light directions (3, 7,
11, 15, 20 lights) in CNN-PS [3] backbone. For each error map, we show the mean angular errors in degrees. The red circle indicates a
region with shadows that cannot be effectively recovered by CNN-PS [3], resulting in a large angular error.

novel solution to more complex challenges, such as non-
Lambertian surfaces and global illumination effects with
complex light transport phenomena. To demonstrate the ef-
fectiveness of ReLeaPS trained with generalized image for-
mation under such conditions, we compare it with a version
of ReLeaPS trained with Lambertian properties, which is
denoted as ‘ReLeaPS w/ Lambert’.

ReLeaPS w/o reward. RL is a learning approach that re-
lies on trial and error and is guided by a reward signal. The
reward function we use for illumination planning in pho-
tometric stereo is based on the mean angular error at the
final step of each episode. However, it is important to ac-
knowledge that this particular reward function is sparse in
nature. To enhance the network training process, we devise
a sparse-to-dense reward design and apply reward-shaping
methods as described in Section 4.1 of the main paper.
However, it is possible that the RL agent may achieve sat-
isfactory performance without the need for a dense reward
design. To verify the effectiveness of this reward design,
we conduct the ablation study and denote the method with
sparse reward as ‘ReLeaPS w/o reward’.

Table 4. Ablation studies on ReLeaPS with 20 lights on
Blobby [4], Sculpture [8], DiLiGenT [6], and DiLiGenT102 [5]
datasets using the LS [9] backbone: including generalized im-
age formation, reward design, and network design (simplified to
‘ReLeaPS w/ Lambert’, ‘ReLeaPS w/o reward’, and ‘ReLeaPS w/
MLP’ respectively).

Dataset
ReLeaPS ReLeaPS ReLeaPS

Ours
w/ Lambert w/o reward w/ MLP

Blobby [4] 3.7 3.5 3.3 2.9
Sculpture [8] 12.9 11.9 10.6 9.7
DiLiGenT [6] 14.8 13.9 13.9 13.8

DiLiGenT102[5] 24.2 24.1 24.5 23.5

ReLeaPS w/ MLP. In order to address the challenges
posed by non-Lambertian reflectances and global illumi-
nation effects, i.e., shadows and inter-reflections in illumi-
nation planning, we develop a specialized dense network
architecture incorporating dueling deep Q-network (DQN)
as our agent network to predict the optimal light direc-
tion based on highest Q-value. Nevertheless, other neu-
ral network architectures may also be effective in handling
this generalized photometric stereo. To validate the effec-
tiveness of our dense dueling DQN, we compare its per-
formance with a simple multi-layer perceptron network,



Table 5. Evaluation of ReLeaPS in DiLiGenT [6] dataset with 10
lights using the CNNPS [3] backbone.

Dataset Rnd. DC05 TK22 Ours All

Blobby 33.0 37.4 16.0 8.2 2.3

Sculpture 40.6 48.9 27.0 12.4 5.2

DiLiGenT 15.3 14.9 17.8 13.0 7.4

DiLiGenT102 33.3 32.7 22.9 21.0 16.4

referred to as ‘ReLeaPS w/ MLP’. The network initially
concatenates a sequence of T − t zero images to the in-
put. This approach ensures that a fixed number of T in-
put images are available for all steps, which keeps the input
shape consistent. Next, two fully connected layers are em-
ployed, each consisting of 256 hidden units. To avoid over-
parameterization, the input images and the output Q-value
map are downsampled by a factor of 4.

To summarize, Table 4 shows that our proposed Re-
LeaPS architecture demonstrates superior performance
compared to ‘ReLeaPS w/ Lambert’, ‘ReLeaPS w/o re-
ward’, and ‘ReLeaPS w/ MLP’ in addressing the challenges
posed by non-Lambertian surfaces and global illumination
effects in illumination planning. This highlights the ef-
fectiveness of our specially designed network architecture,
which incorporates a self-designed reward function inte-
grated with an RL framework for illumination planning in
generalized photometric stereo.

7.6. Experiment with Ten Lights

From Fig. 4 in the main paper, the performance of
ReLeaPS on DiLiGenT decreases compared to other illu-
mination planning methods, especially as the number of
lights increases or when using more lights. We suspect
that this is due to the narrow distribution of light candi-
dates in the DiLiGenT [6] dataset, which diminishes the
advantage of ReLeaPS. We further evaluate Table 1 in the
main paper with 10 lights to demonstrate the effectiveness
of ReLeaPS compared to different illumination planning ap-
proaches with fewer lights. As shown in Table 5, ReLeaPS
with CNN-PS [3] as a baseline brings a more significant
performance boost over other approaches.

7.7. Discussion

This section mainly discusses other properties of Re-
LeaPS, including the time efficiency, the limited number of
lights, reward design for external factors, and the adaptation
to different PS backbones.

Time efficiency. ReLeaPS predicts an optimal light di-
rection around 0.6s and the time required to optimize and
capture 20 lights using ReLeaPS is shorter than capturing
100 lights, where the time spent on data actuation is much
longer than the light prediction.

Limited light numbers in ReLeaPS. Although ReLeaPS
restricts the light selection to 100 discrete candidates, it can
easily adopt more light candidates to approximate a contin-
uous light space and integrate with our setup for high pre-
cision control (e.g., the number of light candidates can be
increased by fourfold by adding another convolution layer,
resulting in an approximate 5% and 0.1% increase in infer-
ence time and memory usage, respectively).

Reward design for external factor. Reward design of
ReLeaPS is based on the mean angular error, which takes
synthetic images as input while taking into account vari-
ous distortions encountered in real observations, such as im-
age noise, tone-mapping, saturation, and 8-bit quantization.
Hence, ReLeaPS is intrinsically trained to be robust against
these external influences.

Adaptation to different PS backbone. ReLeaPS is
adaptable to different PS backbones; however, retraining on
a new PS backbone is necessary due to varying PS models
and assumptions. This results in adaptive changes in opti-
mized light directions. As a trade-off, ReLeaPS may not be
suitable for time-consuming PS approaches.
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