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In this document, we provide additional information
about the proposed work, including an additional study for
the cGAN loss, details for experiments and datasets, an ex-
ample showing the importance of introducing the depth loss,
network architecture details, additional discussion, and more
result visualizations.

1. Ablation Study for cGAN Loss

The proposed cGAN refinement module not only signifi-
cantly improves the rendered image quality, but also provides
the flexibility for users to select desired level of image de-
tails. In this experiment, we applied different weights ωcGAN
to LcGAN in Eq. 7 in the main paper to observe the effect
of cGAN loss to image quality. The quantitative results and
visualizations are shown in Fig. 1 and 2. The results reveal
interesting trade-off between PSNR and LPIPS: when in-
creasing ωcGAN, the PSNR decreases but LPIPS improves
(decreases). This leads to several open research questions:
what is the best image metric to use and how to find the opti-
mal balance among multiple image metrics? How to design
the training losses to obtain the most desirable balance of
image metrics? The answer could be application-oriented
and is worth more future research.

2. Additional Details for Applications

Object detection simulator. We visualized more side-by-
side comparisons of the Detectron2 masks [22] from our
rendered images and the ground truth in Fig. 3. We observed
that besides the high Car IoU (0.74 for log 0a13, 0.75 for log
4d7b), the object detection masks are visually similar when
generated from our images and the ground truth images.
Data augmentation. We compared three cases in this ex-
periment: 1) 52 real images per sequence, 2) 52 real images
+ 96 synthetic images, 3) 52 real images + 160 synthetic
images. For each case we trained MapNet [1] until the vali-
dation loss stopped improving for 8000 epochs. The detailed
quantatitive results are shown in Tab. 1 and the correspond-
ing mean validation loss curve is shown in Fig. 5. The
validation loss in Fig. 5 is a combination of translation and
rotation losses, as described in [1]. The results show that

training with more synthetic images improves the results
with less pose errors and validation loss. One exception we
observed is that the log 2b04 got the best result in case 2
instead of case 3 unlike other sequences, which is caused
by the training process of case 3 stuck in a local minimum.
Overall, the results show significant benefit of this realistic
and geometry-based data augmentation for pose regression.
Changing seasons. In the changing season experiment
(Sec. 5 of the main paper), we used the 5Hz imagery from
one front-facing camera in the NCLT dataset, and selected
one in every three frames for validation. We extracted 3
sequences and the extracted sequences contain 137-167 train-
ing images and 67-78 validation images. The LiDAR scans
were collected with a Velodyne HDL-32E LiDAR. The num-
ber of points in the LiDAR maps range from 7.2 × 105 to
1.4×106, and the camera trajectory lengths span from 17.8m
to 23.1m (Tab. 3). For each training image, we extracted the
LiDAR scan with closets timestamp and used the extracted
LiDAR scans to build the LiDAR map (Fig. 8). Visualiza-
tions of the results from the three collected sequences are
shown in Fig. 4.

3. Additional Dataset Details
Additional statistics of the collect Argoverse 2 sequences,

including the number of train/val images, trajectory length,
and number of LiDAR points in the map, are shown in Tab. 2.
Visualizations of the LiDAR maps of both Argoverse 2 and
NCLT datasets are shown in Fig. 7 and Fig. 8. One can
observe that the noise level is lower in Argoverse 2 maps
(Fig. 7) than NCLT dataset (Fig. 8). This was caused by
more accurate LiDAR pose estimation and has motivated
us for using the tight sampling strategy in the Argoverse 2
dataset (Sec. 3.1 in the main paper). On the other hand, the
semantic labels in Argoverse 2 were used to remove dynamic
objects (Fig. 6).

The LiDAR maps from NCLT consist of LiDAR points
collected from different seasons. One can also observe the
seasonal foliage shape change. For example, the green points
in Fig. 8 (c) were collected in August and spread wider than
the points collected in other seasons, reflecting the fact that
the shape of seasonal foliage is larger in summer.
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Figure 1: Ablation study for cGAN loss strength. We observed a trade-off between PSNR and LPIPS. Stronger cGAN loss
adds more details to the output image, potentially making the image more perceptually pleasant with respect to LPIPS, but not
necessarily faithful with respect to PSNR and SSIM.

Table 1: MapNet [1] results with different levels of data augmentation, where the median and mean for translation and rotation
pose prediction errors are represented as tmed(m), tmean(m), and rmed(

◦), rmean(
◦). The cases with augmented images

significantly outperformed the case trained with only real images.

52 real 52 real + 96 syn. 52 real + 160 syn.

log id tmed tmean rmed rmean tmed tmean rmed rmean tmed tmean rmed rmean

0a13 0.03 0.05 1.01 1.2 0.02 0.03 0.17 0.37 0.03 0.04 0.2 0.2
2aea 0.02 0.04 0.42 0.63 0.02 0.03 0.34 0.35 0.02 0.03 0.15 0.2
2b04 0.04 0.05 0.24 0.28 0.01 0.03 0.21 0.21 0.02 0.04 0.44 0.42
3e7c 0.04 0.07 1.82 2.2 0.04 0.04 0.12 0.24 0.03 0.03 0.18 0.21
4d7b 0.02 0.03 0.23 0.24 0.02 0.03 0.29 0.44 0.02 0.02 0.16 0.21
4d32 0.04 0.07 0.45 0.44 0.05 0.07 0.29 0.4 0.04 0.06 0.2 0.22
42c8 0.03 0.04 0.35 0.44 0.03 0.05 0.31 0.33 0.03 0.04 0.24 0.29
4690 0.03 0.04 0.36 0.34 0.04 0.04 0.3 0.29 0.04 0.04 0.15 0.18

Table 2: Dataset statistics for Argoverse 2 sequences

Argoverse 2 dataset

log id # train #val traj. (m) # LiDAR points

0a13 155 22 22.9 502,567
2aea 155 22 26.3 517,136
2b04 155 22 6.5 338,572
3e7c 155 22 31.0 547,837
4d7b 155 22 19.9 298,121
4d32 155 22 28.4 415,469
42c8 155 22 31.6 580,788
4690 155 22 28.4 546,343

Table 3: Dataset statistics for NCLT sequences

NCLT dataset

log id # train #val traj. (m) # LiDAR points

area 1 159 75 22.0 841,587
area 2 137 67 17.8 721,461
area 3 167 78 23.1 1,352,948

For the noisy LiDAR maps, we added LiDAR rain noise
to individual scans according to [5] before building the map.
We used R = 8 and zmax = 200 as the parameters. This

noise model consists of two parts: 1) a threshold that re-
moves faraway LiDAR measurements according to min-
imum detectable power and a LiDAR intensity decaying
model in the rain. 2) a rain noise model for LiDAR range
measurement. The resulting maps are shown in Fig. 9.

4. The Importance of LiDAR Supervision

Here we present an example to further demonstrate the
importance of LiDAR depth loss, especially in the environ-
ment lacking photometric constraints. Given a camera frame
t, we computed the photometric errors along the epipolar
lines in its consecutive frames t− 1 and t+1. In Fig. 10, we
can observe the flat bottom in the photometric curves with
respect to depth, showing there is no unique minimum to
find the optimal depth in this condition.

5. System Architecture Details

The architectures of our volume rendering networks and
the refinement network H are shown in Fig. 2 in the main
paper and Fig. 11. We used LeakyReLU in activation layers
and did not use batchnorm layers.

In practice, real-world vision-LiDAR datasets do not al-
ways contain large number of training images and the net-
work training can be prone to over-fitting. Empirically, we



(a) ωcGAN = 10−6 (b) ωcGAN = 10−5 (c) ωcGAN = 10−4 (d) GT

Figure 2: The effect of cGAN loss strength. The results applying different cGAN loss strength are shown in (a)-(c). We can
observe that the images with larger ωcGAN contain more details but are not necessarily faithful to the ground truth.



(a) Left: ours/ right: GT (log 4d7b) (b) Left: Ours/ right: GT (log 0a13)

Figure 3: Side-by-side comparisons of the Detectron2 [22] results on our synthetic images and ground truth images from the
validation set.

found the proposed ResNet-based encoder (6-layer autoen-
coder + 3-layer ResNet blocks) works well despite of its
small size. A relevant observation of advocating small re-
ceptive fields for refinement CNNs is also mentioned by [6],
indicating that small receptive fields are beneficial for gener-
ating view-consistent results.

6. Discussion

The advantage of using cGANs to generate realistic-
looking images from real-world datasets has been well-
proven in many previous works [6, 9, 10, 14, 19, 24]. On
the other hand, our proposed framework supports other types
of image refinement modules and we would like to point
out other potential alternatives as additional discussion. Re-
cently, although not as well-explored as cGANs yet, diffu-
sion models also showed impressive performance in image
synthesis tasks [4, 16, 17, 20]. In contrast to the one-step

image refinement CNN used in our work, the application of
iterative conditional diffusion models to real-world image
quality refinement would be an interesting direction to ex-
plore. It is worth mentioning that recently, InfiniCity [11]
demonstrated a 2D-3D hybrid approach that generates syn-
thetic voxel grids to perform city-scale voxel-based neural
rendering. It would be interesting to see how this 2D-3D
hybrid approach can interact with our real-world LiDAR
measurements in the future. Another interesting direction is
to consider a joint refinement of the predicted depth and the
rgb with the multi-view photometric consistency losses used
commonly in deep multiview reconstruction works [2, 8, 12].
The photometric losses can be applied to a sequence of aug-
mented virtual video poses and potentially refine the output
depth quality in a self-supervised way.

A potential alternative system design for LiDAR-assisted
NeRF is to follow NPLF [13]. NPLF aggregates point fea-
tures into ray features with self-attention mechanism instead



(a) Season 1 (b) Season 2 (c) Season 3 (d) GT

Figure 4: Visualization of changing season results for the corresponding LiDAR maps in Fig. 8. From top to bottom are the
results from area 1, 2, and 3.

Figure 5: Mean validation loss for different data augmen-
tation setups. Increasing the amount of augmented data
significantly reduces the validation loss.

of explicit distance-based weights and volume rendering
like ours and PointNeRF [23], and was trained without Li-
DAR depth loss. The attention mechanism provides more
flexibility than the explicit method, and could potentially
better overfit the training views. However, we expect the
explicit method by PointNeRF to follow LiDAR geometry
more faithfully.

Finally, we visualize some failure cases for future re-
search reference (Fig. 12). Our system can produce unsatis-

(a) W/o mask (b) W/ mask (c) GT

Figure 6: The results of w/o, w/ the moving object masks,
and the ground truth. We observed the blurry shadows from
moving objects in (a) and their removal in (b).

factory results when given inaccurate 3D labels and LiDAR
depth. Also, thin objects are still challenging to render.



(a) 0a13 (b) 2aea

(c) 2b04 (d) 3e7c

(e) 4d7b (f) 4d32

(g) 42c8 (h) 4690

Figure 7: Visualization of the collected LiDAR maps from Argoverse 2 dataset [21].



(a) Area 1 (a) Area 2 (c) Area 3

Figure 8: Visualization of the collected LiDAR maps from NCLT dataset [3]. LiDAR points collected in different seasons are
shown by different colors.

(a) Clean (b) Noisy

Figure 9: The LiDAR maps before (a) and after (b) adding rain noise from [5]. The LiDAR measurements affected by the rain
noise have shorter and noisier range.

7. More Results
In this section, we show more visualizations from our

method and the baselines. The depth and RGB outputs from
BlockNeRF with URF LiDAR depth loss, the point-based
baseline, and our method are show in Fig. 13, 14, and 15.
Additional visualizations for the noisy LiDAR map case are
shown in Fig. 16. Resonating the findings of previous NeRF
works, our study also showed that the positional encoding
module is helpful (Tab. 4). The contribution of the proposed
point-sampling strategy is shown quantitatively and qualita-
tively in Tab. 4 and Fig. 17.
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Figure 10: The effect of LiDAR depth loss. (a) The trunk region (blue dot on frame t) does not contain distinguished
photometric information for determining depth. (b) The photometric error curves (within depth range 3− 20m) of the frame
t blue dot in (a) on frame t− 1 and frame t+ 1 are shown in green and red. The corresponding epipolar line segments are
denoted by blue line segments on the frame t− 1 and frame t+ 1 images in (a). Note that the photometric error curves in (b)
contain large flat regions and no unique minimum for determining the optimal depth. The validation depths at this region w/o
and w/ the LiDAR depth loss are shown in (c) and (d). We observed that the LiDAR depth provides guidance for correct depth
on the trunk in (d).

Table 4: Ablation study. We show the contribution of each component quantitatively. The use of cGAN significantly improved
results with all image metrics. The proposed tight point sampling strategy and the positional encoding module also helped.
Note that the noisy and clean versions have different black regions and the numbers are not directly comparable.
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Table 5: Quantitative number comparison for the Argoverse 2 sequences.

map type method metric log ID
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Figure 11: Our image refinement network H. The downsam-
pling 2D convolutional layers with stride 2 are represented
by blue arrows, and the upsampling transposed 2D convolu-
tional layers are represented by green arrows. The ResNet
blocks [7] in the middle are represented by red arrows. Two
2D convolutional layers (black arrows) with stride 1 are used
at input and output. LeakyReLU activations are appended to
each layer except for the output layer.
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Figure 12: Some failure cases. (Top) Incomplete dynamic
object removal caused by inaccurate 3D labels. It leaves
ghosts in the LiDAR map and affect our output. (Bottom)
Thin objects with color similar to the background.
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(a) Point-based (b) Ours (c) [18] + depth (d) GT

Figure 13: Additional visual comparison with baselines



(a) Point-based (b) Ours (c) [18] + depth (d) GT

Figure 14: Additional visual comparison with baselines



(a) Point-based (b) Ours (c) [18] + depth (d) GT

Figure 15: Additional visual comparison with baselines
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(a) Point-based (noisy) (b) Ours (noisy) (c) Ours (clean) (d) GT (noisy)

Figure 16: Additional visual comparison with baselines on noisy LiDAR maps.



(a) Point-based (naive) (b) Naive (c) Ours (d) GT

Figure 17: Additional visual comparison for the point sampling strategy. The proposed point sampling strategy gives more
accurate depth than the naive radius-based baseline.


