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A. Overview

This supplementary is organized as follows. In Sec. A.1,
we first expand on implementation and training details from
the main paper. Then, in Sec. A.2, we provide per-class
synthetic-to-real generalization results (see Sec. 5.1 of the
main paper). Sec. A.3 goes through an empirical analysis
of the amplitude spectra for synthetic and real images.
Sec. A.4 discusses the computational complexity of PASTA.
Next, Sec. A.5 contains more qualitative examples of PASTA
augmentations and predictions for semantic segmentation.
Finally, Sec. A.6 summarizes the licenses associated with
different assets used in our experiments.

A.1. Implementation and Training Details

In this section, we outline our training and implementa-
tion details for each of the three tasks – Semantic Segmen-
tation, Object Detection, and Object Recognition. We also
summarize these details in Tables. 1a, 1b, and 1c.
Semantic Segmentation (see Table. 1a). For our primary
semantic segmentation (SemSeg) experiments (in Tables 1,
4, and 6), we use the DeepLabv3+ [3] architecture with back-
bones – ResNet-50 (R-50) [9] and ResNet-101 (R-101) [9].
In Sec. A.2, we report additional results with DeepLabv3+
using the MobileNetv2 (Mn-v2) [22] backbone. We adopt
the hyper-parameter (and distributed training) settings used
by [5] for training. Similar to [5], we train ResNet-50,
ResNet-101 and MobileNet-v2 models in a distributed man-
ner across 4, 4 and 2 GPUs respectively. We use SGD (with
momentum 0.9) as the optimizer with an initial learning rate
of 10−2 and a polynomial learning rate schedule [14] with a
power of 0.9. Our models are initialized with supervised Im-
ageNet [13] pre-trained weights. We train all our models for
40k iterations with a batch size of 16 for GTAV. Our segmen-
tation models are trained on the train split of GTAV and evalu-
ated on the validation splits of the target datasets (Cityscapes,
BDD100K and Mapillary). For segmentation, PASTA is
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applied with a base set of positional and photometric aug-
mentations (PASTA first and then the base augmentations) –
GaussianBlur, ColorJitter, RandomCrop, RandomHorizon-
talFlip and RandomScaling. For RandAugment [7], we only
consider the vocabulary of photometric augmentations for
segmentation & detection. We conduct ablations (within
computational constraints) for the best performing RandAug-
ment setting using R-50 for syn-to-real generalization and
find that best performance is achieved when 8 (photometric)
augmentations are sampled at the highest severity level (30)
from the augmentation vocabulary for application. Whenever
we train a prior generalization approach, say ISW [5] or IBN-
Net [16], we follow the same set of hyper-parameter config-
urations as used in the respective papers. Table. 1a includes
details for SegFormer and HRDA runs. All models except
SegFormer and HRDA were trained across 3 random seeds.

Object Detection (see Table. 1b). For object detection
(ObjDet), we use the Faster-RCNN [19] architecture with
ResNet-50 and ResNet-101 backbones (see Tables 2, 5 in
the main paper). Consistent with prior work [12], we train
on the entirety of Sim10K [11] (source dataset) for 10k it-
erations and pick the last checkpoint for Cityscapes (target
dataset) evaluation. We use SGD with momentum as our op-
timizer with an initial learning rate of 10−2 (adjusted accord-
ing to a step learning rate schedule) and a batch size of 32.
Our models are initialized with supervised ImageNet [13]
pre-trained weights. All models are trained on 4 GPUs
in a distributed manner. For detection, we also compare
PASTA against RandAugment [7] and Photometric Distor-
tion (PD). The sequence of operations in PD to augment
input images are – randomized brightness, randomized con-
trast, RGB→HSV conversion, randomized saturation & hue
changes, HSV→RGB conversion, randomized contrast, and
randomized channel swap.

Object Recognition (see Table. 1c). For our primary ob-
ject recognition (ObjRec) experiments (see Table 3 in main
paper), we train classifiers with ResNet-101 [9] and ViT-
B/16 [8] backbones. For ResNet-101, we start from super-



(a) Semantic Segmentation Training
Config Value Value (SegFormer) Value (HRDA)

Source Data GTAV (Train Split) GTAV (Entirety) GTAV (Entirety)
Target Data Cityscapes (Val Split) Cityscapes (Val Split) Cityscapes (Val Split)

BDD100K (Val Split)
Mapillary (Val Split)

Segmentation Architecture DeepLabv3+ [3] SegFormer [23] HRDA [10]
Backbones ResNet-50 (R-50) [9] MiT-B5 [23] MiT-B5 [23]

ResNet-101 (R-101) [9]
MobileNetv2 (Mn-v2) [22]

Training Resolution Original GTAV resolution Original GTAV resolution Original GTAV resolution
Optimizer SGD AdamW AdamW
Initial Learning Rate 10−2 6× 10−5 6× 10−5

Learning Rate Schedule Poly-LR Poly-LR Poly-LR
Initialization Imagenet Pre-trained Weights [13] Imagenet Pre-trained Weights [13] Imagenet Pre-trained Weights [13]
Iterations 40k 160k 40k
Batch Size 16 4 2
Augmentations w/ PASTA Gaussian Blur, Color Jitter, Random Crop Photometric Distortion Photometric Distortion

Random Horizontal Flip, Random Scaling Random Crop, Random Flip Random Crop, Random Flip
Model Selection Criteria Best in-domain validation performance End of training End of training
GPUs 4 (R-50/101) or 2 (Mn-v2) 4 1

(b) Object Detection Training
Config Value

Source Data Sim10K
Target Data Cityscapes (Val Split)
Segmentation Architecture Faster-RCNN [19]
CNN Backbones ResNet-50 (R-50) [9]

ResNet-101 (R-101) [9]
Training Resolution Original Sim10K resolution for R-50, R-101
Optimizer SGD (momentum = 0.9)
Initial Learning Rate 10−2

Learning Rate Schedule Step-LR, Warmup 500 iterations, Warmup Ratio 0.001
Steps 6k & 8k iterations

Initialization Imagenet Pre-trained Weights [13]
Iterations 10k
Batch Size 32
Augmentations w/ PASTA Resize, Random Flip
Model Selection Criteria End of training
GPUs 4

(c) Object Recognition Training
Config Value Value (for Table. 3, following [4])

Source Data VisDA-C Synthetic VisDA-C Synthetic
Target Data VisDA-C Real VisDA-C Real
Backbone ResNet-101 (R-101) [9] ResNet-101 (R-101) [9]

ViT-B/16 [8] (Sup & DINO [1])
Optimizer SGD w/ momentum (0.9) SGD w/ momentum (0.9)
Initial Learning Rate 2× 10−4 10−4

Weight Decay 10−4 5× 10−4

Initialization Imagenet [13] Imagenet [13]
Epochs 10 30
Batch Size 128 32
Augmentations w/ PASTA RandomCrop, RandomHorizontalFlip RandAugment [7]
Model Selection Criteria Best in-domain val performance Best in-domain val performance
GPUs 1 (CNN) or 4 (ViT) 1

Table 1: Implementation & Optimization Details. We summarize details surrounding dataset, training, optimization and model selection
criteria for our semantic segmentation, object detection and object recognition experiments. More detailed configs in code.



Method Real mIoU ↑

G→C G→B G→M Avg ∆

1 Baseline (B) [5]∗ 25.92 25.73 26.45 26.03
2 B + PASTA 39.75 37.54 43.28 40.19±0.45 +14.16

3 IBN-Net [16]∗ 30.14 27.66 27.07 28.29
4 IBN-Net + PASTA 37.57 36.97 40.91 38.48±0.75 +10.19

5 ISW [5]∗ 30.86 30.05 30.67 30.53
6 ISW + PASTA 37.99 37.49 42.44 39.31±1.26 +8.79

Table 2: MobileNet-v2 [22] GTAV→Real (SemSeg) General-
ization Results. Semantic Segmentation DeepLabv3+ models
trained on GTAV (G) and evaluated on {Cityscapes (C), BDD100K
(B), Mapillary (M)}. ∗ indicates numbers drawn from published
manuscripts. Bold indicates best. ∆ indicates (absolute) improve-
ment. PASTA improves a vanilla baseline (rows 1, 2) and is com-
plementary to existing methods (rows 3-6).

vised ImageNet [13] pre-trained weights. For ViT-B/16 we
start from both supervised and self-supervised (DINO [1])
ImageNet pre-trained weights. We train these classifiers for
10 epochs with SGD (momentum 0.9, weight decay 10−4)
with an initial learning rate of 2× 10−4 with cosine anneal-
ing – the newly added classifier and bottleneck layers [2]
were trained with 10× more learning rate as the rest of the
network. We train on 90% of the (synthetic) VisDA-C train-
ing split (and use the remaining 10% for model selection)
with a batch size of 128 in a distributed manner across 4
GPUs. We use RandomCrop, RandomHorizontalFlip as ad-
ditional augmentations with PASTA. In Sec. A.2, we provide
additional results demonstrating how PASTA is complemen-
tary to CSG [4], a state-of-the-art generalization method on
VisDA-C. For these experiments, to ensure fair comparisons,
we train ResNet-101 based classifiers (with supervised Ima-
geNet pre-trained weights) with same configurations as [4].
This includes the use of an SGD (with momentum 0.9) opti-
mizer with a learning rate of 10−4, weight decay of 5×10−4

and a batch size of 32. These models are trained for 30
epochs. CSG [4] also uses RandAugment [7] as an augmen-
tation – we check the effectiveness of PASTA when applied
with and without RandAugment during training.

A.2. Synthetic-to-Real Generalization Results

MobileNet-v2 GTAV→Real Generalization Results. Our
key generalization results for semantic segmentation (Sem-
Seg) (in Tables. 1, 4 and 6) are with ResNet-50 and ResNet-
101 backbones. In Table. 2, we also report results when
PASTA is applied to DeepLabv3+ [3] models with Mo-
bileNetv2 – a lighter backbone tailored for resource con-
strained settings. We find that PASTA substantially improves
a vanilla baseline (by 14+ absolute mIoU points; rows 1, 2)
and is complementary to existing methods (rows 3-6).
PASTA complementary to CSG [4]. To evaluate the efficacy

Method Accuracy ∆

1 Oracle (IN-1k) [4]∗ 53.30
2 Baseline (Syn. Training) [4]∗ 49.30
3 CSG [4]∗ 64.05
4 CSG (RandAug) 63.84±0.29 +14.54
5 CSG (PASTA) 64.29±0.56 +14.99
6 CSG (RandAug + PASTA) 65.86±1.13 +16.56

Table 3: PASTA is complementary to CSG [4]. We apply PASTA

to CSG [4]. Since CSG inherently uses RandAug, we also report
results with and without the use of RandAug when PASTA is applied.
∗ indicates drawn directly from published manuscripts. We report
class-balanced accuracy on the real (val split) target data of VisDA-
C. Results reported across 3 runs. Bold indicates best. ∆ indicates
absolute improvement over baseline.

of PASTA for object recognition (ObjRec), in Table. 3, we
apply PASTA to CSG [4], a state-of-the-art generalization
method on VisDA-C Syn→Real. Since CSG inherently uses
RandAugment [7], we apply PASTA (α = 10, k = 1, β =
0.5) both with (row 6) and without (row 5) RandAugment
and find that applying PASTA improves over vanilla CSG
(row 4) in both conditions.
Per-class GTAV→Real Generalization Results. Tables 4, 5
and 6 include per-class synthetic-to-real generalization re-
sults when a DeepLabv3+ (R-50 backbone) model trained
on GTAV is evaluated on Cityscapes, BDD100K and Map-
illary respectively. For GTAV→Cityscapes (see Table. 4),
we find that Baseline + PASTA consistently improves over
Baseline and RandAugment. For IBN-Net and ISW in this
setting, we observe consistent improvements (except for
the classes terrain and fence). For GTAV→BDD100K (see
Table. 5), we find that for the Baseline, while PASTA out-
performs RandAugment on the majority of classes, both
are fairly competitive and outperform the vanilla Baseline
approach. For IBN-Net and ISW, PASTA almost always out-
performs the vanilla approaches (except for the class wall).
For GTAV→Mapillary (see Table. 6), for Baseline, we find
that PASTA outperforms the vanilla approach and RandAug-
ment. For IBN-Net and ISW, PASTA outperforms the vanilla
approaches with the exception of the classes train and fence.
PASTA helps SYNTHIA→Real Generalization. We
conducted additional syn-to-real experiments using SYN-
THIA [21] as the source domain and Cityscapes, BDD100K
and Mapillary as the target domains. For a baseline
DeepLabv3+ model (R-101), we find that PASTA – (1) pro-
vides strong improvements over the vanilla baseline (31.77%
mIoU, +3.91% absolute improvement) and (2) is compet-
itive with RandAugment (32.30% mIoU). More generally,
we find that syn-to-real generalization performance is worse
when SYNTHIA is used as the source domain as opposed to
GTAV – for instance, ISW [5] achieves an average mIoU of
31.07% (SYNTHIA) as opposed to 35.58% (GTAV). SYN-



Method roa
d

bu
ild

ing

ve
ge

tat
ion

ca
r

sid
ew

alk

sk
y

po
le

pe
rso

n

ter
rai

n
fen

ce
wall bic

yc
le

sig
n

bu
s

tru
ck

rid
er

lig
ht

tra
in

moto
rcy

cle

mIoU

1 Baseline (B) [5]∗ 45.1 56.8 80.9 61.0 23.1 38.9 23.9 58.2 24.3 16.3 16.6 13.4 7.3 20.0 17.4 1.2 30.0 7.2 8.5 29.0
2 B + RandAug 58.5 56.3 77.3 83.7 30.3 45.1 27.3 57.8 20.6 20.9 11.4 16.9 9.7 20.3 15.0 2.4 28.1 14.0 10.3 31.9
3 B + PASTA 84.1 80.5 85.8 85.9 40.1 81.8 31.9 66.0 31.4 28.1 29.0 21.8 28.5 24.5 28.7 7.0 32.9 23.4 27.2 44.1

4 IBN-Net [16]∗ 51.3 59.7 85.0 76.7 24.1 67.8 23.0 60.6 40.6 25.9 14.1 15.7 10.1 23.7 16.3 0.8 30.9 4.9 11.9 33.9
5 IBN-Net + PASTA 78.1 79.5 85.8 84.5 31.7 80.1 32.2 63.4 38.8 21.7 28.0 18.2 22.6 26.4 29.0 2.8 34.0 16.5 22.9 41.9

6 ISW [5]∗ 60.5 65.4 85.4 82.7 25.5 70.3 25.8 61.9 38.5 23.7 21.6 15.5 12.2 25.4 21.1 0.0 33.3 9.3 16.8 36.6
7 ISW + PASTA 76.6 78.4 85.6 83.7 32.5 83.1 33.1 63.4 40.4 23.6 27.3 17.4 22.3 25.7 30.1 3.3 35.9 18.2 19.9 42.1

Table 4: GTAV→Cityscapes per-class generalization results. Per-class IoU comparisons for (SemSeg) syn-to-real generalization results
when DeepLabv3+ (R-50 models trained on GTAV are evaluated on Cityscapes. Results are reported across 3 runs. ∗ indicates drawn
directly from published manuscripts. Class headers are in decreasing order of pixel frequency.
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1 Baseline (B) [5]∗ 48.2 32.3 34.3 58.2 67.3 23.0 19.8 21.4 11.3 28.4 5.6 3.4 18.1 43.9 30.2 11.1 16.0 5.1 0.0 25.1
2 B + RandAug 75.4 82.8 67.7 74.7 74.1 39.3 32.7 26.6 22.7 37.0 16.5 5.0 23.9 51.7 35.8 12.0 29.3 20.2 0.0 38.3
3 B + PASTA 86.0 86.6 74.8 72.7 82.8 38.4 31.2 24.9 23.7 34.8 6.4 11.2 26.2 55.1 37.0 13.3 38.3 19.9 0.0 40.2

4 IBN-Net [16]∗ 68.9 66.9 56.7 66.6 70.3 28.8 21.4 22.1 12.8 31.9 7.2 6.0 21.7 50.2 35.0 18.1 23.2 5.8 0.0 32.3
5 IBN-Net + PASTA 86.1 87.6 74.9 72.3 82.3 36.6 30.6 26.2 25.3 37.1 10.8 13.2 25.5 56.0 36.8 21.4 38.9 26.0 0.0 41.5

6 ISW [5]∗ 74.9 77.4 65.2 69.0 72.4 30.4 22.6 26.2 16.2 34.9 6.1 11.5 22.2 50.3 36.9 11.4 31.3 10.0 0.0 35.2
7 ISW + PASTA 86.5 87.9 74.0 73.0 83.2 37.7 28.6 28.1 23.4 37.2 7.8 11.3 25.0 55.1 37.8 23.6 35.5 22.4 0.0 41.0

Table 5: GTAV→BDD100K per-class generalization results. Per-class IoU comparisons for (SemSeg) syn-to-real generalization results
when DeepLabv3+ (R-50 models trained on GTAV are evaluated on BDD100K. Results are reported across 3 runs. ∗ indicates drawn directly
from published manuscripts. Class headers are in decreasing order of pixel frequency.
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1 Baseline (B) [5]∗ 42.2 46.8 64.9 33.5 24.9 72.3 14.4 27.7 23.8 6.7 8.5 23.7 53.7 7.0 35.8 18.4 4.9 15.5 10.8 28.2
2 B + RandAug [7] 51.7 59.6 75.5 39.5 33.9 81.3 22.6 37.2 24.6 4.2 32.4 31.2 56.5 13.4 36.2 18.0 11.9 21.4 5.0 34.5
3 B + PASTA 93.3 83.0 76.3 76.9 40.2 83.3 27.1 40.9 37.1 19.2 50.4 35.2 63.3 19.5 41.4 29.4 25.2 38.1 15.2 47.1

4 IBN-Net [16]∗ 82.0 66.4 73.5 57.1 32.9 73.1 24.9 31.5 28.4 10.5 38.9 30.7 56.4 16.0 38.0 18.6 9.1 16.6 12.6 37.7
5 IBN-Net + PASTA 94.4 81.7 76.1 76.9 40.4 80.8 27.1 40.3 38.7 19.0 43.2 38.0 62.0 20.5 39.3 25.7 23.6 31.6 12.4 45.9

6 ISW [5]∗ 88.2 74.8 74.3 66.1 36.2 78.7 26.0 35.4 30.2 15.2 36.6 33.3 58.6 14.4 37.9 17.8 11.1 20.4 11.0 40.3
7 ISW + PASTA 94.6 82.9 76.7 76.0 41.9 81.8 25.8 40.4 40.9 18.8 43.1 34.1 61.6 19.9 40.2 24.5 22.3 30.5 11.6 45.7

Table 6: GTAV→Mapillary per-class generalization results. Per-class IoU comparisons for (SemSeg) syn-to-real generalization results
when DeepLabv3+ (R-50 models trained on GTAV are evaluated on Mapillary. Results are reported across 3 runs. ∗ indicates drawn directly
from published manuscripts. Class headers are in decreasing order of pixel frequency.



Method Base Augmentations Real mIoU ∆Positional Photometric

1 Baseline (B) ✓ ✓ 26.99
2 B + PASTA ✗ ✗ 40.25 +13.26
3 B + PASTA ✓ ✗ 40.37 +13.38
4 B + PASTA ✓ ✓ 41.90 +14.91

Table 7: PASTA vs Base Augmentations. Semantic Segmentation
DeepLabv3+ (R-50) models trained on GTAV (at an input reso-
lution of 1024 × 560 due to compute constraints) and evaluated
on {Cityscapes, BDD100K, Mapillary}. Bold indicates best. ∆
indicates (absolute) improvement over Baseline.

THIA has significantly fewer images compared to GTAV
(9.4k vs 25k), which likely contributes to relatively worse
generalization performance.
PASTA and Base Augmentations. PASTA is applied with
some consistent color and positional augmentations (see
Section. A.1). To understand if PASTA alone leads to any
improvements, in Table. 7, we conduct a controlled experi-
ments where we train a baseline DeepLabv3+ model (R-50)
on GTAV (by downsampling input images to a resolution of
1024× 560 due to compute constraints) with different aug-
mentations and evaluate on real data (Cityscapes, BDD100K
and Mapillary). We find that applying PASTA alone leads to
significant improvements (13+ absolute mIoU points; row
2) and including the positional (row 3) and photometric (row
4) augmentations leads to further improvements.

A.3. Amplitude Analysis

PASTA relies on the empirical observation that synthetic
images have less variance in their high frequency compo-
nents compared to real images. In this section, we first show
how this observation is widespread across a set of syn-to-real
shifts over fine-grained frequency band discretizations and
then demonstrate how PASTA helps counter this discrepancy.
Fine-grained Band Discretization. For Fig. 2 [Right] in
the main paper, the low, mid and high frequency bands are
chosen such that the first (lowest) band is 1/3 the height
of the image (includes all spatial frequencies until 1/3rd
of the image height), second band is up to 2/3 the height
of the image excluding band 1 frequencies, and the third
band considers all the remaining frequencies. To investigate
similar trends across fine-grained frequency band discretiza-
tions, we split the amplitude spectrum into 3, 5, 7, and 9
frequency bands in the manner described above, and ana-
lyze the diversity of these frequency bands across multiple
datasets. Across 7 domain shifts (see Fig. 1 and 2) – {GTAV,
SYNTHIA} → {Cityscapes, BDD100K, Mapillary}, and
VisDA-C Syn→Real, we find that (1) for every dataset
(whether synthetic or real), diversity decreases as we head
towards higher frequency bands and (2) synthetic images ex-
hibit less diversity in high-frequency bands at all considered

Method Time (s)

Fwd-Bwd Pass Data Transf.

1 Base 0.838 0.069

2 RandAug 1.318 0.534
3 PASTA (CPU) 5.028 4.256
4 PASTA (GPU) 1.176 0.048

Table 8: PASTA runtime on CPU and GPU. Time (in seconds)
taken by RandAugment and PASTA for 1914× 1052 sized images
on an A40 GPU. Bold indicates fastest.

levels of granularity.
Increase in amplitude variations post-PASTA. Next, we
observe how PASTA effects the diversity of the amplitude
spectrums on GTAV and VisDA-C. Similar to above, we
split the amplitude spectrum into 3, 5, 7, and 9 frequency
bands, and we analyze the diversity of these frequency bands
before and after applying PASTA to images (see Fig. 3 and 4).
For synthetic images from GTAV, when PASTA is applied,
we observe that the standard deviation of amplitude spec-
trums increases from 0.4 to 0.497, 0.33 to 0.51 and 0.3 to
0.52 for the low, mid and high frequency bands respectively.
As expected, we observe maximum increase for the high-
frequency bands.

A.4. Computational complexity of PASTA

PASTA is a fast data augmentation step as it can be run en-
tirely on GPUs using FFT from torch.fft. Overall, this
makes our implementation faster than prior augmentation
like RandAug which operates on CPU. Table 8 compares
time taken for a GTAV batch (2 images) for the most expen-
sive SemSeg setting (SegFormer-B5) and shows that PASTA
(GPU) is faster than RandAug implementations. PASTA
runtime depends on FFT, and therefore follows the scaling
behavior of FFT for larger inputs.

A.5. Qualitative Examples

PASTA Augmentation Samples. Fig. 5 includes more ex-
amples of images from synthetic datasets (from GTAV and
VisDA-C), when RandAugment and PASTA are applied.
Semantic Segmentation Predictions. We include qual-
itative examples of semantic segmentation predictions
on Cityscapes made by Baseline, IBN-Net and ISW
(DeepLabv3+, ResNet-50) trained on GTAV (corresponding
to Tables 1, 4 and 6 in the main paper) Fig. 6, 8 and 10
respectively when different augmentations are applied (Ran-
dAugment and PASTA). The Cityscapes images we show
predictions on were selected randomly. We include Ran-
dAugment predictions only for the Baseline. To get a better
sense of the kind of mistakes made by different approaches,
we also include the difference between the predictions and
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Figure 1: Variations in amplitude values across fine-grained frequency bands (GTAV→Real and SYNTHIA→Real).
Across domain shifts GTAV→Real and SYNTHIA→Real, and four settings corresponding to fine-grained frequency bands
(3, 5, 7 and 9 bands; increasing in frequency from Band-1 to Band-n), we find that synthetic images have less variance in
high-frequency components of the amplitude spectrum compared to real images.

ground truth segmentation masks in Fig. 7, 9 and 11 (ordered
accordingly for easy reference). The difference images show
the predicted classes only for pixels where the prediction
differs from the ground truth.

A.6. Assets Licenses

The assets used in this work can be grouped into three
categories – Datasets, Code Repositories and Dependencies.
We include the licenses of each of these assets below.
Datasets. We used the following publicly available datasets
in this work – GTAV [20], Cityscapes [6], BDD100K [24],
Mapillary [15], Sim10K [11], and VisDA-C [18]. For GTAV,
the codebase used to extract data from the original GTAV
game is distributed under the MIT license.1 The license
agreement for the Cityscapes dataset dictates that the dataset
is made freely available to academic and non-academic enti-
ties for non-commercial purposes such as academic research,
teaching, scientific publications, or personal experimenta-
tion and that permission to use the data is granted under
certain conditions.2 BDD100K is distributed under the BSD-

1https://bitbucket.org/visinf/projects-2016-playing-for-
data/src/master/

2https://www.cityscapes-dataset.com/license/

3-Clause license.3 Mapillary images are shared under a
CC-BY-SA license, which in short means that anyone can
look at and distribute the images, and even modify them a bit,
as long as they give attribution.4 Densely annotated images
for Sim10k are available freely5 and can only be used for
non-commercial applications. The VisDA-C development
kit on github does not have a license associated with it, but it
does include a Terms of Use, which primarily states that the
dataset must be used for non-commercial and educational
purposes only.6

Code Repositories. For our experiments, apart from code
that we wrote ourselves, we build on top of three existing
public repositories – RobustNet7, MMDetection8 and CSG9.
RobustNet is distributed under the BSD-3-Clause license.
MMDetection is distributed under Apache License 2.010.

3https://github.com/bdd100k/bdd100k/blob/master/LICENSE
4https://help.mapillary.com/hc/en-us/articles/115001770409-Licenses
5https://fcav.engin.umich.edu/projects/driving-in-the-matrix
6https://github.com/VisionLearningGroup/taskcv-2017-

public/tree/master/classification
7https://github.com/shachoi/RobustNet
8https://github.com/open-mmlab/mmdetection
9https://github.com/NVlabs/CSG

10https://github.com/open-mmlab/mmdetection/blob/master/LICENSE

https://bitbucket.org/visinf/projects-2016-playing-for-data/src/master/
https://bitbucket.org/visinf/projects-2016-playing-for-data/src/master/
https://www.cityscapes-dataset.com/license/
https://github.com/bdd100k/bdd100k/blob/master/LICENSE
https://help.mapillary.com/hc/en-us/articles/115001770409-Licenses
https://fcav.engin.umich.edu/projects/driving-in-the-matrix
https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/classification
https://github.com/VisionLearningGroup/taskcv-2017-public/tree/master/classification
https://github.com/shachoi/RobustNet
https://github.com/open-mmlab/mmdetection
https://github.com/NVlabs/CSG
https://github.com/open-mmlab/mmdetection/blob/master/LICENSE


M
ea

n

0.2

0.258

0.317

0.375

0.433

0.492

0.55

Al
l

Ba
nd

-1

Ba
nd

-2

Ba
nd

-3

VisDA-C (Synthetic) VisDA-C (Real)

M
ea

n

0.2

0.258

0.317

0.375

0.433

0.492

0.55

Al
l

Ba
nd

-1

Ba
nd

-2

Ba
nd

-3

Ba
nd

-4

Ba
nd

-5

VisDA-C (Synthetic) VisDA-C (Real)

M
ea

n

0.2

0.258

0.317

0.375

0.433

0.492

0.55

Frequency Bands

Al
l

Ba
nd

-1

Ba
nd

-2

Ba
nd

-3

Ba
nd

-4

Ba
nd

-5

Ba
nd

-6

Ba
nd

-7

M
ea

n
0.2

0.258

0.317

0.375

0.433

0.492

0.55

Frequency Bands
Al

l

Ba
nd

-1

Ba
nd

-2

Ba
nd

-3

Ba
nd

-4

Ba
nd

-5

Ba
nd

-6

Ba
nd

-7

Ba
nd

-8

Ba
nd

-9

Figure 2: Variations in amplitude values across fine-grained frequency bands (VisDA-C Synthetic→Real). For the
VisDA-C Synthetic→Real domain shift, and four settings corresponding to fine-grained frequency bands (3, 5, 7 and 9
bands; increasing in frequency from Band-1 to Band-n), we find that synthetic images have less variance in high-frequency
components of the amplitude spectrum compared to real images.

CSG, released by NVIDIA, is released under a NVIDIA-
specific license.11

Dependencies. We use Pytorch [17] as the deep-learning
framework for all our experiments. Pytorch, released by
Facebook, is distributed under a Facebook-specific license.12
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Figure 4: Variations in amplitude values across fine-grained frequency bands for synthetic images post-PASTA (VisDA-
C). For VisDA-C (Synthetic), we find that applying PASTA increases variations in amplitude values across different frequency
bands. Four plots correspond to fine-grained frequency bands (3, 5, 7 and 9 bands; increasing in frequency from Band-1 to
Band-n). We find the maximum amount of increase for the highest frequency bands across different granularity levels.
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Figure 5: PASTA augmentation samples. Examples of images from different synthetic datasets when augmented using PASTA
and RandAugment [7]. Rows 1-3 include examples from GTAV and rows 4-6 from VisDA-C.
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Figure 6: GTAV→Cityscapes Baseline SemSeg Predictions. Qualitative predictions made on randomly selected Cityscapes
validation images by a Baseline DeepLabv3+ model (R-50 backbone) trained on GTAV synthetic images. The first two
columns indicate the original image and the associated ground truth and rest indicate the listed methods.
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Figure 7: GTAV→Cityscapes Baseline SemSeg Prediction Diffs. Differences between prediction and ground truth for
predictions made on randomly selected Cityscapes validation images by a Baseline DeepLabv3+ model (R-50 backbone)
trained on GTAV synthetic images. The first two columns indicate the original image and the associated ground truth and rest
indicate the listed methods.
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Figure 8: GTAV→Cityscapes IBN-Net [16] SemSeg Predictions. Qualitative predictions made on randomly selected
Cityscapes validation images by IBN-Net (DeepLabv3+ model with R-50 backbone) trained on GTAV synthetic images. The
first two columns indicate the original image and the associated ground truth and rest indicate the listed methods.
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Figure 9: GTAV→Cityscapes IBN-Net [16] SemSeg Prediction Diffs. Differences between prediction and ground truth for
predictions made on randomly selected Cityscapes validation images by IBN-Net (DeepLabv3+ model with R-50 backbone)
trained on GTAV synthetic images. The first two columns indicate the original image and the associated ground truth and rest
indicate the listed methods.
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Figure 10: GTAV→Cityscapes ISW [5] SemSeg Predictions. Qualitative predictions made on randomly selected Cityscapes
validation images by ISW (DeepLabv3+ model with R-50 backbone) trained on GTAV synthetic images. The first two columns
indicate the original image and the associated ground truth and rest indicate the listed methods.
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Figure 11: GTAV→Cityscapes ISW [5] SemSeg Prediction Diffs. Differences between prediction and ground truth for
predictions made on randomly selected Cityscapes validation images by ISW (DeepLabv3+ model with R-50 backbone)
trained on GTAV synthetic images. The first two columns indicate the original image and the associated ground truth and rest
indicate the listed methods.


