
A. Pretraining Details
In this section, we delve into the implementation details

of our QD4V pretraining approach to provide a comprehen-
sive understanding of our methodology. Firstly, we present
a PyTorch style code for our branched ResNet ensemble in
Listing 1. We also present a code snippet to calculate the
QD loss (Eq. 7) using this branched ensemble in Listing 2
for a single mini-batch.
Model initialisation: We initialise the models with Ima-
geNet pretrained weights obtained from Pytorch’s torchvi-
sion package for QD4V supervised pre-training. Note that
Listing 1 snippet shows the model initialisation only for
supervised pre-training. For MoCo pre-training, we use a
MoCov2 pretrained checkpoint trained for 800 epochs from
the official implementation of [15]. For experiments with
ImageNet100, we use the ImageNet-100 pretrained check-
point available in the official implementation of [38]. Both
query and momentum encoder is initialised with the query
and momentum encoder respectively from official imple-
mentation.
Formulating batches for QD4V: As shown in Eq 3, the
formulation of |T |-dimensional phenotype requires features
for |T | transformed inputs. This leads to additional for-
ward passes through each member of the ensemble lead-
ing to increased computational overhead. To tackle this
issue, we design a PyTorch dataloader that concatenates
augmented and unaugmented mini-batches of size m such
that all features required to evaluate the phenotype can be
evaluated with a single forward pass. For example, given
an unaugmented batch [x1, x2, ..., xm] and transformed
inputs [[T1(x1), ..., T1(xm)], [T2(x1), ..., T2(xm)], · · ·], the
dataloader combines them into one single batch, such that
we can perform a single pass to obtain |T |+1 outputs (log-
its) and features. This is also shown in Listing 2. Out-
puts corresponding to unaugmented images (or weakly aug-
mented in case of MoCo) are used for quality loss.
Hyperparameters: For all downstream experiments in Ta-
ble 1, Table 2, and Table 3, we consider an ensemble with
N = 5 members. For supervised pre-training, we train the
model for 20 epochs with SGD optimizer with a batch-size
of 128. We adopt a learning rate warm-up for 5 epochs with
a warmup decay of 0.01, followed by a cosine decay sched-
ule with learning rate of 0.5. For supervised pre-training,
we also apply label smoothening and perform exponential
moving average (EMA) on the model weights. For con-
trastive learning experiments, we use the SGD optimizer
with a learning a rate of 0.03 with a batch size of 128. For
both pre-training paradigms, we set �d is set to 0.2 and �kl

is set to 0.1.
Training competitor - Diverse Baseline In Table 1, Table
2, and Table 3, we evaluate our supervised pre-training ap-
proach by comparing it to a diverse ensemble strategy (re-
ferred to as the ’div’ ensemble) which was inspired by con-

cepts from [23, 50]. The purpose of these ensemble strate-
gies is to increase the robustness of predictions by promot-
ing diversity among the predictions of the different mem-
bers in the ensemble. In this section, we provide details on
how we implemented this baseline and trained it.

We denote a training sample by (x, y), where y can be
obtained from ground truth or self-supervision. Similar to
our experiments, we introduce a population of N feature ex-
tractors, represented as an ensemble, F = {f✓i}Ni=1, which
aim to learn a diverse set of probability distributions. We
denote the predictions of a model by ŷi = �(g�i(f✓i(x))),
where g�i is the projection head or classifier layer corre-
sponding to i

th member of the ensemble and � denotes the
softmax function. To incorporate diversity in predictions,
[23, 50] employ symmetrised KL divergence between pre-
dictions of the ensemble. We borrow this concept and for-
mulate a loss term corresponding to diversity shown in Eq.

Ldiversity,KL =
NX

i 6=j

1

2

⇣
KL(yikyj ; ⌧) + KL(yjkyi; ⌧)

⌘
(9)

Here, ⌧ denotes the temperature used to scale the logits
within softmax. Thus, the total loss function becomes

Lqd = Lquality + �dLdiversity,KL (10)

The resulting loss function in Eq. 10 encourages the net-
works to make the right prediction according to the ground-
truth label, but then they are also encouraged to make dif-
ferent second-best, third-best, and so on, predictions.

Similar to our the formulation of ensembles for QD4V
pre-training, we share the first three layers (layer1,
layer2, layer3, after which different members of the
ensemble branch out into their own sequence of layers hav-
ing a separate layer4 and projection head. We also ini-
tialise the entire ensemble with ImageNet pre-trained mod-
els. We train the model for 20 epochs with SGD optimizer,
along with learning rate warm-up for 5 epochs, followed by
a cosine decay schedule. For these experiments, �d is set to
0.5 and ⌧ is set to 6.0.

B. Downstream tasks
Section 5 in our paper shows extensive evaluation of

QD4V pre-training on a diverse set of classification, re-
gression and dense estimation tasks. Complete details on
datasets and tasks are provided in Table 5.

We provide a code snippet to find best model parame-
ters {Ũi}Ni=1 and {b̃i}Ni=1 by sweeping over l2 regularisa-
tion constants for each member of the ensemble in Listing
3. This step is followed by searching for best fusion weights
w (Eq 8) as shown in Listing 4. We then relearn {U}Ni=1 and
{b}Ni=1 on combined train and validation data and fuse the

Dataset Classes Original train examples Train examples Valid. examples Test examples Accuracy measure Test provided

C
la

ss
ifi

ca
tio

n

CIFAR-10 [36] 10 50000 45000 5000 10000 Top-1 accuracy -
CIFAR-100 [36] 100 50000 44933 5067 10000 Top-1 accuracy -

Cars [35] 196 8144 6494 1650 8041 Top-1 accuracy -
Aircraft [43] 100 3334 3334 3333 3333 Mean per-class accuracy Yes

DTD (split 1) [17] 47 1880 1880 1880 1880 Top-1 accuracy Yes
Caltech-101 [26] 101 3060 2550 510 6084 Mean per-class accuracy -

Flowers [47] 102 1020 1020 1020 6149 Mean per-class accuracy Yes

R
eg

re
ss

io
n

300W [1] 136 599 179 180 240 R2 -
Leeds Sports Pose [33] 28 1200 960 240 800 R2 -

CelebA [41] 10 162770 162770 19867 19962 R2 Yes
Animal Pose [10] 40 6117 3760 1179 1178 PCK@0.05 -

MPII Human Pose [2] 32 3498 2099 700 699 PCK@0.05 -
ALOI [29] 1 24000 14400 4800 4800 R2 -

Causal3D [60] 10 255200 204160 51040 255200 R2 Yes

Table 5. Details of downstream classification and regression datasets used to evaluate QD4V pretraining.

N CIFAR10 CIFAR100 Flowers Caltech 101 DTD Cars Aircraft 300w LS Pose CelebA Animal Pose MPII ALOI Causal3D Rank
1 (Baseline) 90.4 68.2 85.2 84.7 71.9 44.4 36.0 70.2 55.4 49.0 11.2 18.0 24.1 64.1 4.6

3 90.2 72.4 85.7 90.1 72.0 46.3 39.6 75.4 57.4 60.8 12.4 18.5 26.7 71.8 2.7
5⇤ 90.3 70.4 86.9 89.9 72.2 45.4 36.9 76.6 62.4 61.5 12.5 18.5 28.4 72.8 1.8
6 90.3 71.3 86.8 89.7 72.0 45.3 36.9 76.3 62.7 61.3 12.5 18.9 27.5 71.9 2.0

Table 6. Ablation study over the size of the ensemble. We report the downstream performance of Supervised QD4V pre-training for many-
shot classification and regression tasks. 5⇤ corresponds to results reported in Table 1.

test set predictions of ensemble members with weights w.
Finally, we report the corresponding evaluation metric on
the test set of the data.

B.1. Classification
For classification, we evaluate on standard benchmarks

mentioned in Table 5. We fit a multinomial logistic regres-
sion model (from sklearn package) on the extracted features
of dimensionality 2048 from the frozen backbones. We do
not apply any augmentation and the images were resized
to 224 pixels along the shorter side using bicubic resam-
pling, followed by a center crop of 224 ⇥ 224. We select
the l2 regularisation constant on the validation set over 45
logarithmically spaced values between 10�6 and 105. The
model is optimised using L-BFGS on the softmax cross-
entropy objective.

B.2. Regression
For regression, we consider a diverse range of tasks with

varying invariances or sensitivities. Our aim is to consider a
wide range of tasks spanning spatial and appearance sensi-
tivities. We consider common spatially sensitive tasks like

• Facial landmark prediction: 300W [1], CelebA
[41].

• Pose estimation: MPII [2], Leeds Sports Pose [33]
and Animal Pose [10].

• 6D pose estimation: Causal3dIdent.

and appearance sensitive tasks like

• Object hue prediction: Causal3DIdent

• Object orietation prediction: Learning to predict
pose of an obhect based on the variations in lighting
conditions in ALOI [29]

We report Percentage of Correct keypoints (PCK with
threshold of 0.05) for MPII and Animal Pose, and for the
rest we report R2 score. We present more details on dataset
splits in Table 5. For regression tasks, we fit a multi-output
linear regression model (from sklearn package) on the ex-
tracted features of the backbones. Image pre-processing
pipelines is similar to classification tasks. We select the l2
regularisation constant on the validation set over 100 log-
arithmically spaced values between 10�2 and 105. The
model is optimised on the Mean Squared Error (MSE) ob-
jective.

B.3. Object detection

We train the detector models on the VOC 2007 and 2012
train- val sets, and test on VOC 2007 test. When evaluat-
ing frozen backbones, we freeze all the residual blocks of
the ResNets. We extract features from the backbone using
a Feature Pyramid Network architecture [39] and attach a
Faster R-CNN [55] detector head to produce bounding box
predictions. Similar to linear/logistic classifiers for regres-
sion/classification, a separate Faster-RCNN head is learned
for each member of the ensemble. During training, the im-
ages are resized so the shorter side is one of [480, 512, 544,
576, 608, 640, 672, 704, 736, 768, 800] and during testing
to 800 pixels. The models are trained for 144k iterations
with a 100 iteration warm-up to an initial learning rate of
0.0025 which is decayed by a factor of 10 at iterations 96k
and 128k. The batch size is 2 and we used a single GPU per

N CUB Flowers FC 100 Plant Disease 300w LS Pose CelebA Causal3D Rank
(5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5) s = 0.05 s = 0.2 s = 0.05 s = 0.2 s = 0.05 s = 0.2 s = 0.05 s = 0.2

1 (Baseline) 70.0±0.5 90.4±0.3 77.3±0.2 93.7±0.3 53.8±0.5 78.7±0.4 68.9±0.3 88.8±0.4 20.5±0.5 24.8±0.3 46.9±0.6 48.5±0.1 39.2±0.5 41.4±0.5 58.9±0.1 62.4±0.7 3.3
3 71.0±0.5 90.5±0.3 73.1±0.5 93.3±0.4 52.9±0.4 75.3±0.4 68.1±0.5 91.0±0.2 35.5±0.1 40.6±0.3 49.9±0.4 50.7±0.2 42.8±0.9 50.9±0.6 59.4±0.2 62.9±0.7 3.0
5⇤ 71.4±0.3 90.8±0.4 73.4±0.2 93.2±0.4 57.5±0.1 76.2±0.6 69.4±0.3 91.0±0.3 37.5±0.4 44.9±0.2 59.7±0.4 60.3±0.2 50.5±0.6 53.1±0.3 60.3±0.4 63.4±0.1 1.9
6 70.5±0.1 91.0±0.3 73.7±0.1 93.6±0.1 57.2±0.3 76.5±0.2 69.2±0.1 91.0±0.3 37.6±0.8 44.7±0.6 59.8±0.6 60.4±0.8 50.8±0.7 53.8±0.1 60.4±0.5 63.5±0.2 1.5

Table 7. Ablation study over the size of the ensemble. We report the downstream performance of Supervised QD4V pretraining for few-
shot classification and regression tasks. 5⇤ corresponds to results reported in Table 2.

Method DomainNet CIFAR10 ! STL10 Living17 Entity30 ImageNet-R ImageNet-Sketch ImageNet-A Rank

M
oC

o LP 79.7 ± 0.6 85.1 ± 0.2 82.2 ± 0.1 63.2 ± 1.3 70.6 46.4 45.7 2.5
FT 55.5 ± 2.2 82.4 ± 0.4 77.8 ± 0.7 55.5 ± 2.2 52.4 40.5 27.8 4

LP-FT 80.7 ± 0.9 90.7 ± 0.3 82.6 ± 0.3 62.3 ± 0.9 72.9 48.4 49.1 1.8
Ours 74.7 ± 1.1 90.1 ± 0.2 83.4 ± 0.1 62.5 ± 0.3 71.6 50.7 49.7 1.8

Table 8. Out of distribution (OOD) accuracies with 90% confidence intervals over 3 runs for DomainNet, CIFAR10 ! STL10, Living17,
and Entity30. For ImageNet-A, ImageNet-Sketch, and ImageNet-A, we report the average accuracy over 3 runs. QD pre-training performs
comparably to LP-FT performance despite using no backpropagation.

model. Any other details of training uses the default values
of the detectron2 [67] framework.

B.4. Semantic segmentation
We evaluate QD4V on popular semantic segmentation

datasets like Cityscapes and ADE20k datasets. We train a
linear layer similar to [4] on the representations obtained
from the frozen backbone to produce segmentation masks.
For all dataset, the images are of size 512 ⇥ 512. Given
the output feature map of dimension (2048, 32, 32) of a
ResNet-50, the map is first fed to a linear layer that outputs
a map of dimension (numclasses, 32, 32), which is then up-
sampled using bilinear interpolation to the predicted mask
of dimension (numclasses, 512, 512). We use the 40k itera-
tions schedule available in mmsegmentation [18] with both
ADE20k and Cityscapes, with the SGD optimizer, and use
a learning rate of 0.001.

C. Additional results
C.1. Ablation over the size of the ensemble

In Tables 1, 2, and 3, we present the performance of a QD
ensemble consisting of N = 5 members. In this section, we
explore the effect of varying the ensemble size by perform-
ing an ablation study with N ranging from 1 (baseline) to
6. The results for many-shot and few-shot classification and
regression are shown in Tables 6 and 7, respectively. As
we increase the number of encoders in the ensemble, each
member can learn more diverse invariances, which can ben-
efit tasks that require specific sensitivities. Our experiments
demonstrate that increasing the number of members from 3
to 5 generally leads to improved performance. However, we
observe only marginal performance gains with N = 6.

To summarize, our ablation study reveals that increasing
the size of the QD ensemble can improve performance on
many-shot and few-shot classification and regression tasks.
However, there is a diminishing return in performance gains
beyond a certain point. The optimal number of members in

Model Brightness Contrast Grayscale Rotation Flipping
Supervised 0.54 0.64 0.81 0.43 0.92

MoCO 0.77 0.79 0.96 0.45 0.95
CLIP 0.52 0.59 0.71 0.58 0.87

Method 300w LS Pose CelebA Animal Pose MPII ALOI Causal3D
MoCo 87.2 69.0 92.5 13.9 19.9 46.0 78.1
CLIP 87.2 64.2 92.1 12.3 19.2 44.2 75.8

QD (MoCo) 88.9 71.8 95.2 14.2 22.4 47.4 80.6
Table 9. Top: Comparison of invariances exhibited by ImageNet
pretrained, MoCO and CLIP models. Bottom: Downstream per-
formance of MoCO, CLIP and QD4V for regression tasks.

the ensemble appears to be around 5, which strikes a bal-
ance between diversity and complexity.

C.2. Results on distribution shift datasets
We also evaluate our framework under OOD (Out-

of-distribution) conditions for downstream tasks Do-
mainNet [59], CIFAR10 ! STL10 [28], ImageNet-
sketch[62], ImageNet-A [31], ImageNet-R [31], Living17
and Entity30[56] as proposed by [37].
Does QD4V benefit distribution shift in downstream
tasks? We evaluate the effectiveness of QD pre-training on
distribution shift datasets and compare it with other meth-
ods such as Linear Probing (LP), Finetuning (FT), and LP-
FT, which is a two-step strategy of linear probing with full
fine-tuning. As shown in [37], fine-tuning can perform
worse than linear probing out-of-distribution (OOD) when
the pre-trained features are good and the distribution shift
is large, while LP-FT leads to performance gains for OOD
tasks. In Table 8, we demonstrate that QD4V pre-training
achieves comparable performance to LP-FT, while being
more computationally efficient as we only need to perform
linear readout instead of full fine-tuning. We train a linear
classifier on ID train set, search for ↵⇤ on ID val test and re-
port performance of the weighted average of ensemble pre-
dictions of the OOD task. This highlights the potential of
QD pre-training as a robust and efficient method for han-
dling distribution shifts in real-world scenarios.
Can QD4V help large-scale image-text pre-training?
CLIP (Contrastive Language–Image Pre-training) by Ope-

nAI [53] bridges vision and language understanding
through joint training on text-image pairs. CLIP uses two
encoders: a vision encoder based on ViTs or Modified ver-
sion of ResNet50 for images and a language encoder for
text. During training, these encoders learn to associate im-
ages with their corresponding textual descriptions through a
contrastive objective, optimizing the similarity between cor-
rect pairs while minimizing it for incorrect ones. Similar to
many contrastive learning works, CLIP is widely evaluated
on downstream classification tasks, and less on the spatially
sensitive tasks that must also be solved by a general pur-
pose feature. Our findings in Table 9 (bottom), reveal that
CLIP-RN50 underperforms self-supervised models such as
MoCo and QD4V, despite being trained on massively more
data. We attribute this disparity to CLIP’s high level of
invariance to both spatial and appearance- transformations
(Table 9 (top)), which is detrimental to pose sensitive re-
gression tasks. In this regard, we believe that incorporating
diverse invariances with QD4V pre-training for could ben-
efit vision-language models.

1

2 class BranchedResNet(nn.Module):
3 def __init__(self, N, arch, num_classes, stop_grad = True):
4 super(BranchedResNet, self).__init__()
5

6 # Load ImageNet pretrained weights
7 self.base_model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
8 self.num_feat = 2048
9 self.N = N + 1 # Number of encoders, adding 1 because we add the baseline to ensemble for L_KL

10 self.num_classes = num_classes
11

12 del self.base_model.layer4, self.base_model.fc
13

14 # Creating an ensemble by branching out ResNet50 layers
15 # Branching out layer 4 and fc of Resnet50, initialising them with pretrained model too, using

imagenet pretrained weights only for sipervised pre-training
16 self.base_model.branches_layer4 = nn.ModuleList(
17 [resnet50(weights=ResNet50_Weights.IMAGENET1K_V2).layer4
18 for _ in range(self.N)])
19 self.base_model.branches_fc = nn.ModuleList(
20 [resnet50(weights=ResNet50_Weights.IMAGENET1K_V2).fc
21 for _ in range(self.N)])
22

23 if stop_grad: # Freeze gradients of conv1, layer1, layer2, and layer3
24 for name, param in self.base_model.named_parameters():
25 if ’layer4’ not in name and ’fc’ not in name:
26 param.requires_grad = False
27 print(name, param.requires_grad)
28

29 # Freezing gradients of baseline model in ensemble
30 for name, param in self.base_model.branches_layer4[-1].named_parameters():
31 param.requires_grad = False
32 print(name, param.requires_grad)
33

34 for name, param in self.base_model.branches_fc[-1].named_parameters():
35 param.requires_grad = False
36 print(name, param.requires_grad)
37

38 def forward(self, x, reshape = True):
39 ’’’ Input: x: [bs, 3, 224, 224]
40 Returns:
41 A features and outputs ’’’
42 x = self.base_model.conv1(x)
43 x = self.base_model.bn1(x)
44 x = self.base_model.relu(x)
45 x = self.base_model.maxpool(x)
46 x = self.base_model.layer1(x)
47 x = self.base_model.layer2(x)
48 x = self.base_model.layer3(x)
49 feats = [self.base_model.avgpool(self.base_model.branches_layer4[i](x)).view(x.shape[0], -1)
50 for i in range(self.N)]
51 outputs = [self.base_model.branches_fc[i](feats[i]) for i in range(self.N)]
52

53 outputs = torch.cat(outputs).reshape(self.N, -1, self.num_classes)
54 feats = torch.cat(feats).reshape(self.N, -1, self.num_feat)
55 return outputs, feats

Listing 1. Code snippet for Branched ResNet 50.

1

2 ’’’
3 We show how the QD loss is calculated on one mini-batch during pretraining
4 ’’’
5

6 ’’’
7 N: no. of members in ensemble
8 kl_coeff: \lambda_kl
9 div_coeff: \lambda_d

10 x: unaugmented batch
11 labels: labels(supervised/self-supervised) labels
12 x_i: unaugmented image in batch
13 images: DataLoader returns a list of [T_1(x_i), T_2(x_i), ..., T_5(x_i), x_i]
14 models: Ensemble of models, returns a list of features and outputs
15 T: set of augmentations consisting of Random resized crop, Color jitter, Gray scale, Gaussian blur,

Horizontal flip
16 ’’’
17

18 ’’’get_aug_wise_images - Given
19 [[T_1(x_1), .. T_5(x_1)], ...[T_1(x_bs), .. T_5(x_bs)]
20 function rearranges the list
21 [[T_1(x_1), ..., T_1(x_bs)],, [T_5(x_1), T_5(x_bs)], [x_i, ..., x_bs]]
22 Stacks the list and returns a batch of shape (batch_size * (num_augs+1), 3, 224, 224) ’’’
23

24 images = get_aug_wise_images(images, args)
25

26

27 logits, feats = models(images)
28

29 # Output of unaugmented images since last batch_size*num_augs logits correspond to unaugmented images
30 orig_image_logits = logits[:, batch_size*num_augs, :] # (N+1, batch_size, 2048)
31

32 # calculating loss for ensemble
33 ce_loss = [criterion(orig_image_logits[i], labels) for i in range(N)]
34 ce_loss = sum(ce_loss)
35

36 # KL divergence between ensemble and baseline model
37 # Last element in orig_image_logits corresponds to output of baseline model
38 # KL_Divergence returns L_KL with \tau = 6.0
39 kl_div = KL_Divergence(orig_image_logits[:-1], orig_image_logits[-1], T=6)
40

41 # Diversity Loss
42 # get_similarity_vector returns a matrix (N, 5), where i,j-th element corresponds to invariance of

memeber i to augmentation j
43 similarity_matrix = get_similarity_vector(feats[:-1], args)
44 # Pairwise difference of rows -> distance between phenotypes
45 diversity = get_pairwise_rowdiff(similarity_matrix).sum()
46

47 # Total loss
48 loss = (1 - kl_coeff) * ce_loss + div_coeff * diff + kl_coeff * kl_div

Listing 2. Pytorch style pseudocode for QD4V pretraining for a single mini-batch

1

2 ’’’ We fit N sklearn classifiers for the ensemble by sweeping for best regularisation coefficient ’’’
3

4 from sklearn.linear_model import LogisticRegression
5

6 def search_hp(classifier, train_feats, train_labels, val_feats, val_labels, wd_range):
7 ’’’ wd_range is the search space for l2 regularisation constant ’’’
8 best_params = {}
9 best_score = 0.0

10 for wd in wd_range:
11 classifier.set_params(wd) # Set regularisation coefficient as wd
12 classifier.fit(train_feats, train_labels)
13 val_accuracy = classifier.score(val_feats, val_labels)
14 if val_acc > best_score[k]:
15 best_params[str(k)] = wd
16

17 return best_params
18

19 def fit_classifier(train_feats, train_labels, num_classes, metric):
20 ’’’ train_feats, val_feats: Features of trai, val dataset for all members of enseble, shape = (N,

size_of_dataset, 2048)
21 train_labels, val_labels: ground truth labels of entire train, val dataset, shape = (

size_of_dataset,)
22 num_classes: Number of outputs to predict
23 metric: Metric to report
24 wd_range: search space of weight decay values ’’’
25 classifiers = [LogisticRegression(2048, num_classes) for i in range (N)]
26 ’’’Select best ridge hyperparameters for all classifiers ’’’
27 best_params= []
28 for n in range(N):
29 C = search_hp(classifiers[n], train_feats[n], train_labels, val_feats[n], val_labels, wd_range)
30 best_params[n] = C
31 return classifiers, best_params
32

Listing 3. Code snippet for downstream training - Finding best model parameters for an ensemble of size N. Here we provide a snippet for
classification. For regression tasks we change the classifier to Linear Regression and use the corresponding metric

1

2 ’’’ Learn fusion weights w ’’’
3 from sklearn.linear_model import LinearRegression
4

5 def fusion_weights(val_feats, val_labels, classifiers):
6 ’’’ val_feats: Features of val dataset for all members of enseble, shape = (N, size_of_dataset, 2048)
7 val_labels,: One hot labels of val dataset, shape = (size_of_dataset, num_classes)
8

9 We assume that classifiers are fit on train data with best hyper-parameters’’’
10

11 val_preds = []
12

13 for n in range(N):
14 preds = classifiers[n].predict(val_feats[n]) # softmax probabilities
15 val_preds.append(preds)
16

17

18 weights = LinearRegression(fit_intercept=False).fit(val_preds, val_labels).coef_
19 return weights
20

21

Listing 4. Code snippet for downstream training - Learning fusion weights w

D. Proofs
D.1. Preliminaries

Our proof technique makes use of the empirical Rademacher complexity [5], defined as

R̂D(F) = E✏

"
sup
f2F

1

m

mX

i=1

✏if(zi)

#
,

where D = {zi}mi=1 is a dataset composed of i.i.d. random variables, F is a class of functions, and ✏ is a vector of m

Rademacher random variables. It is typical for F is be the composition of some loss function with a class of models, gH;
i.e., F = l �H = {l � h : h 2 H}. One can use the empirical Rademacher complexity to obtain a bound on the expected
value of all f 2 F on new data in terms of the value of the function on the training sample

E[f(z)] 1

m

mX

i=1

f(zi) + 2R̂D(F) + 3M

r
ln(2/�)
2m

,

where M is the maximum value f can take.
We will denote by V the block diagonal matrix where the k-th block along the diagonal is given by the row vector u(k).

D.2. Proof of Lemma 1
Lemma 1. Assuming kf✓i(x)k2 X for all x 2 X , that l(·, ·) is a 1-Lipschitz loss function, and for all w and u(i) that
satisfy the constraints in the definition of H, we have that

R̂Dds(l �H) 3ABX +BXkwk2 +AXkV k2p
m

.

Proof. Let the vector zi be the concatenation of the output of each f✓k(xi), and let c be a vector such that ck = b
(k).

Expanding definitions and leveraging linearity yields

R̂Dds(l �H) = E✏

"
sup
h2H

1

m

mX

i=1

✏il(h(xi), yi)

#

 E✏

"
sup
w,V

1

m

mX

i=1

✏i hw, V zii
#

= E✏

"
sup
w,V

wT
V

m

mX

i=1

✏izi

#
,

where the inequality comes from the contraction inequality for Rademacher complexities. Expanding the definitions of w
and V gives us

E✏

"
sup

�w,�V

(E[wT] +�wT)(E[V] +�V)

m

mX

i=1

✏izi

#
,

where �w = w � E[w] and �V = V � E[V]. We can then expand this into

E✏

"
sup

�w,�V

E[wT]E[V] + E[wT]�V +�wTE[V] +�wT�V

m

mX

i=1

✏izi

#
.

From the distributivity of inner products, we can separate out the E[wT]E[V] term into a new Rademacher complexity term.
This new term evaluate to zero because there are no learnable parameters in it. Subsequently, we can liberally apply the
Cauchy-Schwarz and triangle inequalities to obtain

E✏

"
sup

�w,�V

kE[wT]k2k�V k2 + k�wT k2kE[V]k2 + k�wT k2k�V k2
m

�����

mX

i=1

✏izi

�����
2

#
.

Now note that for any w that satisfies kE[w]�wk2 A we have that kE[w]k2 kwk2 + A (and similar for V), allowing
us to further bound the complexity by

E✏

"
(kwk2 +A)B +A(kV k2 +B) +AB

m

�����

mX

i=1

✏izi

�����
2

#
.

This can then be simplified to

E✏

"
3AB +Bkwk2 +AkV k2

m

�����

mX

i=1

✏izi

�����
2

#
.

Using a standard techniques (see, e.g., the proof of Lemma 26.10 in [57]), and that kzik2 X , we have that

E✏

"�����

mX

i=1

✏izi

�����
2

#

p
mX.

Applying this bound yields

3ABX +BXkwk2 +AXkV k2p
m

.

D.3. Proof of Lemma 2
Lemma 2. For w and V obtained using the procedure in Section 3.3, where the loss function is chosen to be the hinge,
l(t, y) = max(0, 1� ty), we have with probability at least 1� � that

kw � E[w]k2 kṼ k2X
�2

s
2ln(4/�)
(1� ⌘)m

and

kV � E[V]k2 X

�1

r
2ln(4N/�)

m
,

where the inputs, x, to the first layer of linear models satisfy kxk X , �1 is the `2 regularisation hyperparameter for the
first layer, and �2 is the hyperparameter for the second layer.

In the course of proving this Lemma we will use the following results due to [40] and [64].

Lemma 3 (Specialisation of Lemma 1 in [40] for Hilbert spaces). Let A be an algorithm that maps a training set, D, of size
m to some model parameters in a Hilbert space. Then with probability at least 1� �

kA(D)� E[A(D)]k2 ↵(m)
p

2mln(2/�),

where ↵(·) is the uniform argument stability of A.

Lemma 4 (Proposition 3 in [40], implied by Theorem 3.5 in [64]). For `2 Regularised empirical risk minimisation of linear
models with L-Lipschitz and convex loss functions bounded by M , we have that

↵(m) XL

�m
,

where the inputs, x, to the linear model satisfy kxk X .

We now proceed with the proof of Lemma 2.

Proof. From Lemmas 3 and 4, we have for each ui that with probability 1� �

kui � E[ui]k2 X

�

r
2ln(2/�)

m
. (11)

Now note that the spectral norm of a block diagonal matrix is the maximum of the spectral norms of each block. We can
combine the bounds on each ui into a bound on the deviation of V from its expected value using this fact and the union
bound; with probability 1� �,

kV � E[V]k2 X

�

r
2ln(2N/�)

m
. (12)

To get a bound on the deviation of w from its expected value, note that we can just reuse Equation 11 with w in place of ui,
and that instead of an upper bound on kxk2, we require an upper bound on kṼ xk2. Such a bound arises from the definition
of the operator norm,

kṼ xk2 kṼ k2X.

Finally, the 2 inside the logarithm of each bound becomes a 4 due to the union bound, thus ensuring both bounds in the
Lemma statement will hold simultaneously with probability at least 1� �.

D.4. Proof of Theorem 1
Theorem 1. For a model trained using our stacking procedure and the conditions outlined in the statements of Lemmas 1
and 2, we have with probability at least 1� 2�,

E[1[sgn(h(x)) 6= y]] Ê[l(h(x), y)]

+
12X3kṼ k2

p
ln(4/�)ln(4N/�)

�1�2
p
1� ⌘m3/2

+
2X2

p
2ln(4N/�)

�1m
+

2X2kṼ k2
p

2ln(4/�)
�2
p
1� ⌘m

+ 3

r
ln(1/�)
2m

,

where Ê[l(h(x), y)] is the mean ramp loss of the model h, computed on the training data.

Proof. First, note that the ramp loss is an upper bound for the zero–one loss, allowing us to use the ramp loss for the empirical
error term in the bound on the zero–one loss for the expected error. From Lemmas 1 and 2 we have with confidence at least
1� � that

R̂Dds(l �H) 3ABX +BXkwk2 +AXkV k2p
m

=
6X3kṼ k2

p
ln(4/�)ln(4N/�)

�1�2
p
1� ⌘m3/2

+
X

2
p

2ln(4N/�)

�1m
+

X
2kṼ k2

p
2ln(4/�)

�2
p
1� ⌘m

.

Merging this, via the union bound, with the standard Rademacher complexity generalisation bound [5] completes the proof.

References
[1] 300 faces in-the-wild challenge: database and results. Image and Vision Computing, 2016. 300-W, the First Automatic Facial

Landmark Detection in-the-Wild Challenge. 5, 13
[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New benchmark and state of

the art analysis. In CVPR, 2014. 5, 13
[3] Arsenii Ashukha, Andrei Atanov, and Dmitry Vetrov. Mean embeddings with test-time data augmentation for ensembling of repre-

sentations. ICML Workshop on Uncertainty and Robust- ness in Deep Learning, 2021. 6, 7
[4] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicregl: Self-supervised learning of local visual features. NIPS, 2022. 5, 14
[5] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. Journal of

Machine Learning Research, 3(Nov):463–482, 2002. 19, 21
[6] Gregory W Benton, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Learning invariances in neural networks. In NIPS,

2020. 2
[7] Xavier Puig Sanja Fidler Adela Barriuso Bolei Zhou, Hang Zhao and Antonio Torralba. The amsterdam library of object images.

CVPR, 2017. 5, 8
[8] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette

Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. ArXiv, 2021. 2
[9] Aleksander Botev, Matthias Bauer, and Soham De. Regularising for invariance to data augmentation improves supervised learning.

arXiv, 2022. 2
[10] Jinkun Cao, Hongyang Tang, Hao-Shu Fang, Xiaoyong Shen, Cewu Lu, and Yu-Wing Tai. Cross-domain adaptation for animal pose

estimation. In ICCV, 2019. 5, 13
[11] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual

features by contrasting cluster assignments. NIPS, 2020. 1
[12] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret. Quality-diversity optimization: a

novel branch of stochastic optimization. In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. 2021. 2
[13] Ruchika Chavhan, Jan Stuehmer, Calum Heggan, Mehrdad Yaghoobi, and Timothy Hospedales. Amortised invariance learning for

contrastive self-supervision. In ICLR, 2023. 1, 2, 6, 7
[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual

representations. In ICML, 2020. 1, 3
[15] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. ArXiv, 2020. 1,

12
[16] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. ICCV, 2021. 3
[17] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In

CVPR, 2014. 5, 13
[18] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark. https://

github.com/open-mmlab/mmsegmentation, 2020. 7, 14
[19] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,

and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. 8
[20] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like animals. Nature, 2015. 2, 3
[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 5
[22] Thomas Dietterich. Ensemble methods in machine learning. In Multiple Classifier Systems, Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 2000. 3
[23] N. Dvornik, J. Mairal, and C. Schmid. Diversity with cooperation: Ensemble methods for few-shot classification. In ICCV, 2019. 6,

7, 12
[24] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models transfer? In CVPR, 2021. 1
[25] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. Why do self-supervised models transfer? investigating the impact of

invariance on downstream tasks. BMVC, 2022. 1, 2, 3, 6
[26] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian

approach tested on 101 object categories. In CVPR, 2004. 5, 13
[27] Matthew Christopher Fontaine and Stefanos Nikolaidis. Differentiable quality diversity. In NIPS, 2021. 2, 3
[28] Geoff French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation. In ICLR, 2018. 14
[29] Burghouts G.J. Smeulders A.W. Geusebroek, JM. The amsterdam library of object images. IJCV, 2005. 5, 13
[30] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation

learning. In CVPR, 2020. 1, 3

[31] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli,
Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution
generalization. ICCV, 2021. 14

[32] Alexander Immer, Tycho FA van der Ouderaa, Vincent Fortuin, Gunnar Rätsch, and Mark van der Wilk. Invariance learning in deep
neural networks with differentiable laplace approximations. NIPS, 2022. 2

[33] Sam Johnson and Mark Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC.
Aberystwyth, UK, 2010. 5, 13

[34] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In CVPR, 2019. 1
[35] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In ICCV

Workshop on 3D Representation and Recognition (3dRR-13), 2013. 5, 13
[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report, University of

Toronto, 2009. 5, 13
[37] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort pretrained features and

underperform out-of-distribution, 2022. 14
[38] Hankook Lee, Kibok Lee, Kimin Lee, Honglak Lee, and Jinwoo Shin. Improving transferability of representations via augmentation-

aware self-supervision. NIPS, 2021. 2, 6, 7, 8, 12
[39] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object

detection. CVPR, 2016. 5, 13
[40] Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic Stability and Hypothesis Complexity. In Proceedings of

the 34th International Conference on Machine Learning, pages 2159–2167. PMLR, July 2017. 21
[41] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In ICCV, 2015. 5, 13
[42] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. CVPR,

2022. 5
[43] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft. Technical report, 2013. 5,

13
[44] Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning for image-based plant disease detection. Frontiers in

plant science, 2016. 7
[45] João Moreira, Carlos Soares, Alı́pio Jorge, and Jorge Sousa. Ensemble approaches for regression: A survey. ACM Computing

Surveys, 2012. 3, 4
[46] Ury Naftaly, Nathan Intrator, and David Horn. Optimal ensemble averaging of neural networks. Network: Computation in Neural

Systems, 1997. 3
[47] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In ICCVGIP, 2008.

5, 13
[48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. Arxiv, 2018. 3
[49] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive metric for improved few-shot

learning. NIPS, 2018. 7
[50] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via promoting ensemble diversity. In

ICML, 2019. 7, 12
[51] Justin Pugh, Lisa Soros, and Kenneth Stanley. Quality diversity: A new frontier for evolutionary computation. Frontiers in Robotics

and AI, 2016. 2, 3
[52] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning: Invariances, augmentations and

dataset biases. NIPS, 2020. 2
[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,

Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language
supervision, 2021. 8, 15

[54] Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew McDermott, and David K Duvenaud. NIPS, 2021. 2
[55] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal

networks. In NIPS, 2015. 5, 13
[56] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation shift. In ICLR 2021, 2020. 14
[57] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University

Press, 2014. 20
[58] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep transfer learning. In

ICANN, 2018. 1
[59] Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-imbalanced domain adaptation: An empirical odyssey. In Adrien Bartoli and

Andrea Fusiello, editors, ECCV, 2020. 14

[60] Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, and Francesco Locatello.
Self-supervised learning with data augmentations provably isolates content from style. NIPS, 2021. 5, 13

[61] Diane Wagner, Fabio Ferreira, Danny Stoll, Robin Tibor Schirrmeister, Samuel Müller, and Frank Hutter. On the importance of
hyperparameters and data augmentation for self-supervised learning. ICML Pre-training Workshop, 2022. 2

[62] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local predictive
power. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, NIPS. Curran Associates, Inc.,
2019. 14

[63] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and uniformity on the hyper-
sphere. ICML, 2020. 2

[64] Andre Wibisono, Lorenzo Rosasco, and Tomaso Poggio. Sufficient Conditions for Uniform Stability of Regularization Algorithms.
Technical report, MIT, Dec. 2009. 21

[65] Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019. 5
[66] David H. Wolpert. Stacked generalization. Neural Networks, 1992. 2, 4
[67] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/

facebookresearch/detectron2, 2019. 7, 14
[68] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be contrastive in contrastive learning. In ICLR,

2021. 1, 2, 3, 4, 5, 7, 8
[69] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy

reduction. In ICML, 2021. 1

