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A.1. Cross-modal Non-identifiability

In order to present the existence proof of cross-modal
non-identifiability issue, we provide a rigorous definition to
describe the constant modality gap at the individual level:

Definition 1. (Individual ϵ-approximate constant modal-
ity gap) Suppose that f(·) and hv(·) denote a visual en-
coder and a text encoder with prompt template v, respec-
tively, and a denumerable set of images {xi}∞i=1 are con-
sistent with the concept set C. A constant vector c de-
notes the modality gap of {xi}∞i=1 with repect to f(·) and
hv(·), if for all arbitary small scalar ϵ > 0 and arbitary
concepts in C, there exists a positive integer N(ϵ), so that
given arbitary positive integers j satisfying j > N(ϵ), we
have a permutation {x(i)}∞i=1 of {xi}∞i=1 which satisfies
|f(x(j))−hv(c)−c|<ϵ for arbitrary c ∈ C.

The definition does not enforce each pair of image fea-
ture and prompt embedding exactly suits the contant modal-
ity gap as [6]. Instead, it employs the ϵ-approximation lan-
guage of an infinite sequence to define the gap maintained
in a range with a arbitrary small deviation. It suits the prac-
tice with images drawn from a nature distribution.

Proposition 1. Individual cross-modal non-identifiability.
Suppose a single-prompt learning model

(
f(·), hv(·)

)
de-

fines the individual ϵ-approximate constant modality gap.
Given a infinite denumerable set of images X1 with con-
cepts in C1 and the other infinite denumerable set of images
X2 with concepts in C2 (C1/C2 ̸=∅ and C1 ∩ C2 ̸=∅), for
an image xi∈X1 with the ϵ-approximation to the constant
modality gap v by hv(c), there exists an image xj∈X2 with
the identical ϵ-approximation to the constant modality gap
v by hv(c), for arbitrary c ∈ C1/C2.

Proof. Consider two concept sets C1, C2, their correspond-
ing image sets X1, X2, as well as two concepts c1∈C1/C2,
c2∈C1 ∩ C2. From the definition above we know that
for an arbitary small 1

3ϵ > 0, there is a positive inte-
ger N1(

1
3ϵ), so given an arbitary positive integer k satis-

fying k > N1(
1
3ϵ), we have a permutation {x(i1)}∞i1=1

from X1 which satisfies |f(x(k))−hv(c1)−c|< 1
3ϵ, given

x(k)∈{x(i1)}∞i1=1. Here we focus on {x(i1)}∞
i1>N1(

1
3 ϵ)

,

the subchain of {x(i1)}∞i1=1 consistent with the concepts
in C1. Obviously, for c2∈C1 ∩ C2⊂C1, there also
exists an integer N2(

1
3ϵ) > 0, so given an arbitary

positive integer k satisfying k>N2(
1
3ϵ), we may take

a repermutation {x(i1,i2)}∞
i1>N1(

1
3 ϵ),i2=1

from the chain

{x(i1)}∞
i1>N1(

1
3 ϵ)

which satisfies |f(x(k))−hv(c2)−c|< 1
3ϵ,

given x(k)∈{x(i1,i2)}∞
i1>N1(

1
3 ϵ),i2=1

. In the other image set
X2, we may provide a similar deduction. Specifically, given
c2∈C1∩C2⊂C2, for an arbitary small 1

3ϵ, it refers to a pos-
itive integer N3(

1
3ϵ), so given an arbitary integer k satis-

fying k>N3(
1
3ϵ), we may take a permutation {x(i3)}∞i3=1

from X2 which satisfies |f(x(k))−hv(c2)−c|< 1
3ϵ, given

x(k)∈{x(i3)}∞i3=1.
Based on the subchain construction, we con-

sider an image xi drawn from the subchain
{x(i1,i2)}∞

i1>N1(
1
3 ϵ),i2>N2(

1
3 ϵ)

and another image xj

drawn from {x(i3)}∞
i3>N3(

1
3 ϵ)

. Obviously, they satisfy

|f(xi)− hv(c1)− c| < 1

3
ϵ;

|f(xi)− hv(c2)− c| < 1

3
ϵ;

|f(xj)− hv(c2)− c| < 1

3
ϵ.

(1)

While they also result in

|f(xj)− hv(c1)− c|
= |f(xi)− hv(c1)− c+ c− f(xi)

+ hv(c2) + f(xj)− hv(c2)− c|
≤ |f(xi)− hv(c1)− c|+ |f(xi)− hv(c2)

− c|+ |f(xj)− hv(c2)− c|

<
1

3
ϵ+

1

3
ϵ+

1

3
ϵ = ϵ.

(2)

In other words, we also have a denumerable set of images
with an arbitrary mutual concept in C1∩C2 whereas can be



inquired with an exclusive concept in C1/C2 in terms of the
approximation result. Note that, since ϵ is a arbitrary small
number, so given each pair of (f(xi), hv(c1)) with xi∈X1

that satisfy the ϵ-approximation with the assumption, we are
able to find the other pair (f(x(k)

i ), hv(c1)) with x
(k)
i ∈X1

that satisfy the 1
3ϵ-approximation and through the reduction

above, it results in a image xj∈X2 which also satisfies the
ϵ-approximation with hv(c1).

From this observation, images xi and xj distint by the
exclusive concept c1 are impossible to be identified by the
single-prompt learning model

(
f(·), hv(c1)

)
.

We can also extend the ϵ-approximate constant modality
gap from the individual level to the population level:

Definition 2. (Population ϵ-approximate constant modal-
ity gap) Suppose that f(·) and hv(·) denote a visual en-
coder and a text encoder with prompt template v, respec-
tively, and a denumerable set of images {xi}∞i=1 are con-
sistent with the concept set C. A constant vector c denotes
the modality gap of {xi}∞i=1 with repect to f(·) and hv(·),
if for all arbitary small scalar ϵ > 0 and arbitary concepts
in C, there exists a positive integer N(ϵ), so that we have
a permutation {x(i)}∞i=1 of {xi}∞i=1 in which the subchain
{x(i)}∞i>N(ϵ) satisfies |

∑
x∈X f(x)−hv(c)−c|<ϵ for an

arbitrary concept c ∈ C and X⊆{x(i)}∞i>N(ϵ).

From the definition we further derive the formal statment
of population-level cross-modal non-identifiability:

Proposition 2. Population cross-modal non-identifiability.
Suppose a single-prompt learner

(
f(·), hv(·)

)
defines the

population ϵ-approximate constant modality gap. Given an
image group X consistent with the concept set C1 that sat-
isfies the ϵ-approximate constant modality gap by hv(c), we
are able to construct an image group X ′ consistent with
the concept set C2 that satisfies the ϵ-approximate constant
modality gap by hv(c), in which c ∈ C1/C2.

Proof. Simlarly with the proof for the individual-level non-
identifiability, for an arbitary small 1

3ϵ > 0, we use a integer
N1(

1
3ϵ) to construct the subchain {x(i1)}∞

i>N1(
1
3 ϵ)
⊂XC1

where |
∑

x∈X1
f(x)−hv(c1)−c|< 1

3ϵ is satisfied for c1 ∈
C1/C2⊂C1 with ∀ X1⊆{x(i1)}∞

i1>N1(
1
3 ϵ)

. Deriving from

{x(i1)}∞
i1>N1(

1
3 ϵ)

, we are permitted to take its pumutation

to construct {x(i1,i2)}∞
i1>N1(

1
3 ϵ),i2=1

. Therefore with a in-

teger N2(
1
3ϵ)>0, we could also extract a subset X2 from

{x(i1,i2)}∞
i1>N1(

1
3 ϵ),i2>N2(

1
3 ϵ)

to encourage the similar 1
3ϵ-

approximation |
∑

x∈X2
f(x)−hv(c2)−c|< 1

3ϵ, with re-
spect to c2∈C1∩C2⊂C1. Obviously, we can directly extract
a subset X3 from the images that are consistent with the

concept set C2: we may take an integer N3(
1
3ϵ) > 0 to mo-

tivate the permutation {x(i1)}∞
i1>N3(

1
3 ϵ)
⊂XC2

so that pro-

vided with ∀X3⊆{x(i1)}∞
i1>N3(

1
3 ϵ)

, the 1
3ϵ-approximation

|
∑

x∈X3
f(x)−hv(c2)−c|< 1

3ϵ is also achieved.
Based upon the construction above, we now consider the

intersection X1 ∩X2. It obviously satsifies∣∣∣∣ ∑
x∈X1∩X2

f(x)− hv(c1)− c

∣∣∣∣ < 1

3
ϵ,∣∣∣∣ ∑

x∈X1∩X2

f(x)− hv(c2)− c

∣∣∣∣ < 1

3
ϵ.

(3)

With this regard, we cast an ϵ-approximation as follows∣∣∣∣ ∑
x∈X3

f(x)− hv(c1)− c

∣∣∣∣
=

∣∣∣∣ ∑
x∈X1∩X2

f(x)− hv(c1)− c+ c−
∑

x∈X1∩X2

f(x)

+ hv(c2) +
∑

x∈X3

f(x)− hv(c2)− c

∣∣∣∣
≤

∣∣∣∣ ∑
x∈X1∩X2

f(x)− hv(c1)− c

∣∣∣∣+ ∣∣∣∣ ∑
x∈X1∩X2

f(x)

−hv(c2)− c

∣∣∣∣+ ∣∣∣∣ ∑
x∈X3

f(x)− hv(c2)− c

∣∣∣∣
<

1

3
ϵ+

1

3
ϵ+

1

3
ϵ = ϵ

So given a image group X consistent with the concept set
C1 that satisfies the ϵ-approximation with the assumption
by hv(c1), we may construct the reduction above to obtain
X ′=X3. Although X ′ are consistent with the concept set
C2, it also leads to the ϵ-approximation with the assumption
by hv(c1) (c1 ∈ C1/C2).

From this observation, the image groups X and X ′ dis-
tint by the exclusive concept c1 are impossible to be identi-
fied by the single-prompt learning model

(
f(·), hv(c1)

)
.

A.2. The Proof of Proposition.3

We present two lemmas to facilitate the proof of the third
proposition. The first lemma showing that optimizing each
task-specific objective in Eq.7 is equivalent to minimize the
KL-divergence between the image-prompt joint distribution
p(X,H|Ti) and another EBM-modeled image-prompt joint
distribution q(EBM)

ϕ

(X,H|Ti), i.e.,

Eϕ(X,H; Ti) =log
∑
c∼Ui

Pϕ(X,H)[c]

=log
∑
c∼Ui

exp
( sim(f(X),H(c;Vi∪Ui))

γ

)∑K
i=1 exp

( sim(f(X),H(c;Vi∪Ui))
γ

) , (4)



where the auxiliary energy function of q(EBM)

ϕ

(X,H|Ti) is

defined as

E
(a)
ϕ (X,H; Ti) =− log

∑
c∼Vi

Pϕ(X,H)[c]

= − log
∑
c∼Vi

exp
( sim(f(X),H(c;Vi∪Ui))

γ

)∑K
i=1 exp

( sim(f(X),H(c;Vi∪Ui))
γ

) , (5)

which is distinct from the energy function Eϕ(X,H; Ti) ap-
plied in EMPL. Given this, we derive the auxiliary objective

min
ϕ

Ep(X,H|Ti)

[ ∑
c∼Vi

− logPϕ(X,H)[c]
]

− E
q
(EBM)

ϕ
(X,H|Ti)

[
E

(a)
ϕ (X,H; Ti)

]
.

(6)

Resembling the notations of EMPL objecitve

min
ϕ

ETi

[
Ep(X,H|Ti)

[ ∑
c∼Vi

− logPϕ(X,H)[c]
]

︸ ︷︷ ︸
Generic prompt learning goal

−λE
p
(EBM)

ϕ
(X,H|Ti)

[
Eϕ(X,H; Ti)

]
︸ ︷︷ ︸

EBM uncertainty modeling

]
,

(7)

ϕ in Eq.6 denotes the frozen parameters. We will show that
optimizing the Eq.6 is equivalent with optimizing the task-
specific objective of Eq.7, i.e.,

min
ϕ

Ep(X,H|Ti)

[ ∑
c∼Vi

− logPϕ(X,H)[c]
]

− λE
p
(EBM)

ϕ
(X,H|Ti)

[
Eϕ(X,H; Ti)

]
.

(8)

Lemma 1. Given two energy-based distributions p
(EBM)

ϕ

and q
(EBM)

ϕ
with their energy functions defined by Eq.4 and

Eq.5, respectively. The optimization of Eq.8 essentially op-
timizes a combination of one K-way classification objective
and Eq.6 with some co-efficient γ.

Proof. Since the first term across Eq.4 and Eq.5 are iden-
tical to solve a K-way classification objective, we are only
required to consider the equivalence between their second
terms. In specific, we consider the gradient of the second

term in Eq.6,

∂

∂ϕ

(
− E

q
(EBM)

ϕ
(X,H|Ti)

[E
(a)
ϕ (X,H; Ti)]

)
=

∂

∂ϕ

(
E
q
(EBM)

ϕ
(X,H|Ti)

log
∑
c∼Vi

Pϕ(X,H)[c]
)

=

∫
x,h

q
(EBM)

ϕ
(x,h|Ti)

∂

∂ϕ

(
log

∑
c∼Vi

Pϕ(x,h)[c]
)

=

∫
x,h

∑
c∼Vi

Pϕ(x,h)[c]

Z(a)(ϕ)

∂
∂ϕ

(∑
c∼Vi

Pϕ(x,h)[c]
)∑

c∼Vi
Pϕ(x,h)[c]

=

∫
x,h

∂
∂ϕ

(∑
c∼Vi

Pϕ(x,h)[c]
)

Z(a)(ϕ)

=−
∫
x,h

∂
∂ϕ

(∑
c∼Ui

Pϕ(x,h)[c]
)

Z(a)(ϕ)

=− Z(ϕ)

Z(a)(ϕ)

∫
x,h

∑
c∼Ui

Pϕ(x,h)[c]

Z(ϕ)

∂
∂ϕ

(∑
c∼Ui

Pϕ(x,h)[c]
)∑

c∼Ui
Pϕ(x,h)[c]

=− Z(ϕ)

Z(a)(ϕ)

∫
x,h

p
(EBM)

ϕ
(x,h|Ti)

∂

∂ϕ
log

( ∑
c∼Ui

Pϕ(x,h)[c]
)
,

(9)
in which Z(ϕ) and Z(a)(ϕ) refer to the partition functions
of the energy-based distributions p

(EBM)

ϕ
and q

(EBM)

ϕ
, re-

spectively. If we take the co-efficient γ = Z(ϕ)
Z(ϕ)(ϕ)

, the gra-
dient above can be restated as:

∂

∂ϕ

(
− E

q
(EBM)

ϕ
(X,H|Ti)

[E
(a)
ϕ (X,H; Ti)]

)
=− γE

p
(EBM)

ϕ
(X,H|Ti)

∂

∂ϕ
log

( ∑
c∼Ui

Pϕ(X,H)[c]
)
.

(10)

It exactly refers to the gradient of the scecond term in Eq.8.

Given this observation, if we further prove that optimiz-
ing Eq.6 is equivalent with minimizing the KL-divergence
between p(X,H|Ti) and q

(EBM)

ϕ
(X,H|Ti), EMPL objec-

tive (Eq.8) composed by Eq.8, will also refer to the KL-
divergence minimization due to the Lemma.1. It means that
Eq.8 encourages 1−pϕ(X,H|Ui)=1−

∑
c∼Ui

Pϕ(X,H)[c]
for matching the observed image-prompt joint distribution
so that p(X,H|Ti) and pϕ(X,H|Ui) negatively correlate
with each other. To facilitate our proof, we recur the sec-
ond lemma [3]:

Lemma 2. Given a true image-prompt joint distribution
r(X,H), and an EBM-based image-prompt joint distribu-
tion r

(EBM)

θ
(X,H) parameterized by ϕ with respect to the

energy fuction Eθ(X,H). The objective that minimizes the

KL-divergence DKL

(
r(X,H)||r(EBM)

θ
(X,H)

)
can be op-



timized via descending the gradient w.r.t. θ:

E
(x+,h+)∼r

[
∂Eθ(x

+,h+)

∂θ

]
− E

(x−,h−)∼r(EBM)

[
∂Eθ(x

−,h−)

∂θ

]
(11)

The proof is derived from the theoretical analysis in [3].
The first term decreases the energy of image-prompt pairs
drawn from the true distribution while the second term in-
creases the energy of image-prompt pairs drawn from the
energy distribution.

Combined with the previous analysis, we provide the for-
mal proof of Proposition.3:

Proof. In terms of Lemma.2, the KL-divergence minimiza-
tion between p(X,H|Ti) and q

(EBM)

ϕ
(X,H|Ti) refers to de-

scending the gradient in Eq.11. With ϕ replaced with a fixed
ϕ, the gradient can be reformulated to

E
(x+,h+)∼p(X,H|Ti)

[
∂E

(a)
ϕ (x+,h+)

∂ϕ

]

− E
(x−,h−)∼q

(EBM)

ϕ
(X,H|Ti)

[
∂E

(a)
ϕ (x−,h−)

∂ϕ

]
(12)

So we can achieve it by minimizing the KL-divergence be-
tween p(X,H|Ti) and q

(EBM)

ϕ
(X,H|Ti) via the objective

E
(x+,h+)∼p(X,H|Ti)

[
E

(a)
ϕ (x+,h+)

]
− E

(x−,h−)∼q
(EBM)

ϕ
(X,H|Ti)

[
E

(a)
ϕ (x−,h−)

]
.

We found that it holds the upper bound as

E
(x+,h+)∼p(X,H|Ti)

[
E

(a)
ϕ (x+,h+)

]
− E

(x−,h−)∼q
(EBM)

ϕ
(X,H|Ti)

[
E

(a)
ϕ (x−,h−)

]

= E
(x+,h+)∼p(X,H|Ti)

[
− log

∑
c∼Vi

Pϕ(x
+,h+)[c]

]
+ E

(x−,h−)∼q
(EBM)

ϕ
(X,H|Ti)

[
log

∑
c∼Vi

Pϕ(x
−,h−)[c]

]

≤ E
(x+,h+)∼p(X,H|Ti)

[
− logPϕ(x

+,h+)[c]

]
+ E

(x−,h−)∼q
(EBM)

ϕ
(X,H|Ti)

[
log

∑
c∼Vi

Pϕ(x
−,h−)[c]

]

= Ep(X,H|Ti)

[ ∑
c∼Vi

− logPϕ(X,H)[c]
]

−E
q
(EBM)

ϕ
(X,H|Ti)

[
E

(a)
ϕ (X,H; Ti)

]
.

Hence minmizing the upper bound refers to the objective
Eq.6 and in this way, optimizing Eq.6 leads to the gradi-
ent descending with Eq.12, which is equivalent to mini-
mize the KL-divergence between the image-prompt distri-
butions p(X,H|Ti) and q

(EBM)

ϕ
(X,H|Ti) due to Lemma.2.

Besides, according to Lemma.1, we know that optimizing
optimizing Eq.6 equals to optimizing Eq.8. Therefore opti-
mizing Eq.8 exactly leads to the KL-divergence minimiza-
tion DKL

(
p(X,H|Ti)||q(EBM)

ϕ
(X,H|Ti)

)
across different

tasks. Given each task-specific objecitve converged, we ob-
tain p(X,H|Ti)→q

(EBM)

ϕ
(X,H|Ti)∝

∑
c∼Vi

Pϕ(X,H)[c]

=1−
∑

c∼Ui
Pϕ(X,H)[c]=1−pϕ(X,H|Ui). So the propo-

sition is proved.

B. Implementation
In this section, we elaborate the stochastic implementa-

tion for EMPL. We first discuss how to derive the gradients
to update the prompt template with SGLD, then provide the
stochastic version of EMPL and finally provides other de-
tails for our implementation.

B.1. Energy-based Prompt Gradients with SGLD

Most existing researches executs the SGLD-based gradi-
ent update to training examples, in which the model update
is alternatively executed with SGLD-based instances. How-
ever, EMPL draws training instances from a prompt-image
joint distribution where the SGLD-based prompt (embed-
dings) are intuitively generated from parametric templates.
So the parameter udpate is entangled with the SGLD sam-
pling process.

Here we provide more details to reveal the relation be-
tween SGLD and the gradients with regards to the learnable
contexts v, and further design a memory-efficeint method to
implement the algorithm. We consider the SGLD sampler
running on the prompt embedding space,

ht+1 = ht − α

2

∂Eϕ(x
t+1,ht)

∂ht +
√
αϵ2, ϵ2 ∼ N (0; I),

(13)
Note that SGLD runs on the latent space defined by the text
encoder. Suppose that the prompt v(c) goes through the text
encoder h(·) to construct the contrastive learning score, we
tend to split the text encoder h(·) by two successive neural
network modules h2(·), h1(·):

h(v(c)) = h2

(
h1(v; c)

)
(14)

where the learnable context and the class in the prompt v(c)
was separated to highlight the optimization process. In this
manner, h1(v; c) denotes the output to the latent embedding
space Sh1 from the orginal prompt while h2(·) receives the
prompt embeddings in Sh1

, which are drawn by the SGLD



sampler. Given this, we further rewrite the energy function
in the iteration t:

Eϕ

(
xt+1,ht(v(c))

)
= E′

ϕ

(
xt+1, ht

1(v; c)
)
, (15)

where xt+1 denotes the image feature generated by SGLD
from the current iteration. In the original formulationn
(Eq.), xt+1 is conditioned on ht with respect to v. In this
principle, the image features drawn by SGLD rely on v. For
the simplicity in our implementation, our algorithm ignores
how xt+1 changes the learnable context v so that the deriva-
tive chain of E′

ϕ

(
xt+1, ht

1(v; c)
)

would not be branched
from xt+1. Therefore the SGLD sampling for prompt em-
bedding ht+1

1 presents as

ht+1
1 = ht

1 −
α

2

∂E′
ϕ

(
xt+1, ht

1

)
∂ht

1

+
√
αϵ2,

ϵ2 ∼ N (0; I),

(16)

in which ht
1 = ht

1(v; c). In this regard, we turn to consider
the derivative chain rule of ht+1

1 (v; c) with respect to the
learnable context v,

∂ht+1
1

∂v
=

∂ht
1

∂v
− α

2
∂
(∂E′

ϕ(x
t+1, ht

1)

∂ht
1

)
/∂v

)
=

∂ht
1

∂v

(
I− α

2

∂2E′
ϕ(x

t+1, ht
1)

(∂ht
1)

2

)
=

∂h0
1

∂v

t∏
i=0

(
I− α

2

∂2E′
ϕ(x

i+1, hi
1)

(∂hi
1)

2

)
.

(17)

From this observation, we can compute the gradient of the
energy function with respect to the learnable context v:

∂E′
ϕ

(
xt+1, ht

1(v(c))
)

∂v
=

∂E′
ϕ

(
xt+1, ht

1(v(c))
)

∂ht
1

∂ht
1

∂v

=
∂E′

ϕ

(
xt+1, ht

1

)
∂ht

1

∂ht−1
1

∂v

(
I− α

2

∂E′
ϕ(x

t, ht−1
1 )

(∂ht−1
1 )2

)
=
∂E′

ϕ

(
xt+1, ht

1

)
∂ht

1

∂h0
1

∂v

t−1∏
i=0

(
I− α

2

∂2E′
ϕ(x

i+1, hi
1)

(∂hi
1)

2

)
︸ ︷︷ ︸

∆t−1(x,v;c)

(18)
Note that ∂h0

1

∂v is independent with the SGLD sampling pro-

cess;
∂E′

ϕ

(
xt+1,ht

1

)
∂ht

1
can be computed through SGLD. ∆t−1

refers to a series of matrix multiplication across the second-
order derivatives of the energy function with respect to dif-
ferent image feature and prompt embedding pairs drawn by
SGLD. Obviously, they follow the multiplication chain as

∆t(x,v; c) = ∆t−1(x,v; c)

(
I− α

2

∂2E′
ϕ(x

t, ht−1
1 )

(∂ht−1
1 )2

)
.

(19)

Algorithm 1. Energy-based Prompt Gradient per Training Batch
Input:
Images {xj}Mj=1, Unseen class names Ui. Learnable context v.

Output: The EBM-based prompt gradient∇vE
′
ϕ({xj}Mj=1,Ui) .

1: Initiate∇vE
′
ϕ = 0;

2: while c∼Ui do (Parallel execution)
3: Initiate h1(v; c) and ∂h0

1
∂v

= ∂h1(v;c)
∂v

;
4: for j=1:M do (Parallel execution)
5: Initiate ∆(xj ,v; c) = I.
6: for t=0:T do
7: Update xt+1

j , ht
1 by a SGLD sampler;

8: ∇vE
′
ϕ←∇vE

′
ϕ +

∂E′
ϕ

(
xt+1,ht

1

)
∂ht

1

∂h0
1

∂v
∆(xj ,v; c);

9: ∆(xj ,v; c)←∆(xj ,v; c)

(
I −

α
2

∂2E′
ϕ(xt,ht−1

1 )

(∂ht−1
1 )2

)
.

10: end for
11: end for
12: end while
13: return∇vE

′
ϕ.

We observe that {∆i(x,v; c)}t−1
i=1 can be disposed after

we obtained ∆t(x,v; c) with the second-order derivative
of the energy function with respect to the updated im-
age feature and prompt embeddings. Given this, we only
need to store a screenshot of ∆(x,v; c) ← ∆t(x,v; c) for
each iteration, which is enough to formulate the gradient
∂E′

ϕ

(
xt+1,ht

1(v(c))
)

∂v without redundant computation.
The pipeline of computing the energi-based prompt gra-

dient for each training batch can be summarized into Algo-
rithm.1.

B.2. Stochastic Algorithm of EMPL

Algorithm 2. Energy-based Multi-prompt Learning (Stochastic)
Input: An open vocabulary V consists of observed class names V
and unseen class names U ; Training images X = {xj , cj}Nj=1 with
labels as class names in V; the prompt template parameter ϕ .
Output: the optimal prompt template parameter ϕ∗a.
1: Initiate f(·), hv(·) with CLIP;
2: while not converged do
3: Draw a training batchX from X with K1 observed classes

in V , then draw K−K1 unseen classes Ui in U ;
4: Obtain the gradient ∇vP (X ) of the first term in Eq.8 by

the base prompt learning algorithm with X ;
5: Obtain∇vE

′
ϕ(X ,Ui) by Algorithm.1;

6: Update v ← v +Opt(∇vP (X )− λ∇vE
′
ϕ(X ,Ui))b

7: end while
8: return ϕ∗ ← v∗.

aϕ mostly refers to v while is limited to the single learnable context
bOpt denotes an optimizer.



Provided with the gradient update based on the energy-
based function in Algorithm.1, we present the stochastic op-
timization derived from the EMPL objective (Algorithm.2).
Briefly speaking, the stochastic EMPL constructs a task Ti
by drawing a training batch per iteration, in which the im-
ages with labels construct a supervised learning objective
(i.e., the first term in Eq.8) derived from the base prompt
learning counterpart (e.g., CoOp or ProDA); then it tasks
the training images with the unseen class names to compute
the energy-based prompt gradient by Algorithm.1; finally, it
combines the gradients according to the EMPL objective to
update the learnable parameter with an optimizer.

B.3. Other implementation details
The implementation of EMPL depends on the baselines

CoOp and ProDA. We exactly follow their implementations
to facilitate the first term of Eq.8 and take all their learn-
able prompt contexts to construct the energy-based gradient
produced by Algorithm.2. Without loss of generality, we
set λ = 0.1, K−K1=4 (K1 is exactly the same with the
base code of CoOp and ProDA). The SGLD sampler is im-
plemented at the second last transformer layer to generate
prompt embeddings. And we use the SGLD sampler with a
constant step size of 2 and a standard deviation of 1e-3. The
number of updates in each SGLD round is set to 25. As for
SGLD-based prompting, we execut alternatively the SGLD
to generate 8 prompt embeddings for each image per class,
then the prediction is achieved either by the original multi-
prompt paradigm (ProDA) or by the average of voting from
all prompt-based contrastive learning predictions (CoOp).

C. Complementary Experiments
In this section, we provide some empirical studies com-

plementary to the experiments shown in our paper. We first
convey some empirical evidences to verify whether multi-
prompt learning can help to relieve the non-identifiability
issue; then we visualize the multi-prompt embeddings gen-
erated by EMPL.

C.1. Multi-label Classification

In order to justify the non-identifiability issue, we evalu-
ate single-prompt and multi-prompt learners on the dataset
with diverse visual concepts contained within each image.
We evaluate the CoOp and ProDA in the multi-label classi-
fication setup. Specifically, we initialize different prompt
learning models with CLIP then trained the models with
their algorithms on NUS-WIDE [1]. The implementation is
derived from https://github.com/sunanhe/MKT
[2] where the prompt-tuning objective across different base-
lines are replaced by the ranking loss to achieve the multi-
label classification task. We evaluate the baseline models
with their mAP and F1 (K=3) score across zero-shot learn-
ing (ZSL) and generalized zero-shot learning (GZSL) se-

Table 1. The performance based on F1 score, mAP and CR across
the zero-shot learning and generalized zero-shot learning setups.

Prompt ZSL GZSL
learners F1 mAP CR F1 mAP CR
CoOp 29.5 32.5 0.32 21.1 16.8 0.25
ProDA 30.9 33.6 0.16 21.1 17.1 0.11

ProDA(×4) 31.2 34.0 0.12 21.5 17.2 0.08

tups and besides, we also consider their prediction consis-
tency. In particular, for each test image, we consider another
corresponding test image (counterpart) with some shared
classes whereas we inquire the first test image with the ex-
clusive classes that only the second test image belongs to 1.
Given this, we observe whether we can simultaneously in-
quire the first test image with the class it belongs to and with
the class it does not belongs to, respectively. It futher refers
to the consistency rate (CR, i.e., how many images could
be simultaneously inquired with the exclusive classes that
they belong to and they do not belong to, respectively) to
measure the severity of non-identifiability. Obviously, the
higher indicates more serious.

As reported in Table.1, multi-prompt baselines outper-
form single-prompt learning models with clear margins in
the ZSL setup. Besides, we also observe that the CR sig-
nificantly drops as the number of prompts increases. It im-
plies that the non-identifiability has been relieved and prob-
ably contributes to the performance. In the GZSL setup, the
performance difference across baselines are inconspicuous
while the CR is still significantly decreased as the number
of prompts increases.

C.2. Visualization

Figure 1. The t-SNE visualization [5] for the input embedding
spaces between CLIP and EMPL. Different colors indicate differ-
ent prompts with different categories (best viewed in color).

Here we provide the t-SNE visualization [5] to the input
embeddings of the text encoder, which are extracted from
CLIP and EMPL (+CoOp). For CLIP, the hand-crafed de-
scriptive texts with 50 categories are fed into the embed-

1For the images containing multiple exclusive classes, we prefer a pair
of class names with the closest distance between their word embeddings
[4]. The selection for the counterpart image depends on the alphabetical
order.

https://github.com/sunanhe/MKT


ding layer to generate the t-SNE visualization. Since EMPL
does not generate prompts in the input embedding space,
we backpropagate SGLD-based prompt embeddings from
the latent embedding layer to the input embedding layer. It
generates the virtual input embeddings for the t-SNE visu-
alization, which also contains the consistent 50 categories
with the CLIP’s visualization.

As illustrated in Fig.1, we found that CLIP’s prompt in-
puts are scattered in the space more sparsely and only a few
of narrow ranges refer to the textual descriptions with a spe-
cific category. Instead, prompt embeddings generated by
EMPL correspond to more condense virtual input embed-
dings. Besides, the SGLD sampler encourages to generate
multiple prompts for each category description so that their
virtual input embeddings cover more areas in the input em-
bedding space and for each base prompt embedding input,
the SGLD sampler creates a set of derived prompt embed-
dings, which are reflected by a series of virtual input em-
beddings surrounding the base prompt input embedding. It
implies the capability of multi-prompting.
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