A1. More Implementation Details

More Backbone Details. For our AdaMV-MoE, the patch sizes are 8 and 16 for classification and object detection & instance segmentation tasks, respectively. We follow [16] to use a constant window scale of 2 on the OD & IS tasks to save computational outlay. The patches are extracted from images in an overlapping way [75] with a size of 2 for all tasks. To extract patches, we prepend convolutional layers before the Transformer's encoder,

Furthermore, similar to [58], the stochastic depth technique [35] is adopted with a probability of 0.1 during training. In addition, Table A6 summarizes the model configurations of *Large Dense* baselines.

Table A6. Detailed model sizes of (Large Dense) ViT variants.

Backbones	# Transformer Layers	# Attention Heads	Hidden Dimension	MLP Dimensior
ViT-Small*	6	6	576	2304
ViT-Small	12	6	576	2304
ViT-Base	12	6	900	3600
UViT-Base	18	6	576	2304

A2. More Experiment Results

Extra Studies of AES. More comparisons between using a fixed number of activated experts and our AES are conducted with the ViT-Small* backbone. The multi-task vision recognition performance is collected in Table A7. We see that AES yields overall better results since it customizes network capacity for different tasks in MTL.

Table A7. Multi-task vision recognition performance of ViT-Small* with a different number of selected experts or our proposed Adaptive Expert Selection (AES).

# Experts Activated	Classification	Object Detection	Instance Segmentation
	Accuracy(%)	AP (%)	$AP^{mask}(\%)$
k = 2	72.04	38.61	35.23
k = 3	72.66	39.03	35.68
k = 4	72.90	38.98	35.74
AES	72.99	39.04	35.76

Extra Studies on Training Iterations. We vary the number of training iterations for AdaMV-MoE and MTL-ViT, and report the performance in Table A8. We see that AdaMV-MoE enjoys a better convergence.

More Specialization Results. Similar to Figure 4, we provide the class-wise expert usage for object detection and instance segmentation tasks in Figure A8. We see the expert 4 is most frequently used, while other experts' activation is more correlated with class types.

Table A8. Multi-task vision recognition performance of ViT-
Small* trained with a different number of iterations.

# Iterations	Methods	Classification	Object Detection	Instance Segmentation
		Accuracy(%)	AP (%)	$AP^{mask}(\%)$
100K	MTL-ViT AdaMV-MoE	$54.61 \\ 58.84$	35.17 36.65	$33.18 \\ 34.13$
300K	MTL-ViT AdaMV-MoE	68.36 69.71	36.46 37.50	34.25 34.93
500K	MTL-ViT AdaMV-MoE	68.71 72.99	36.98 39.04	34.60 35.76

Figure A8. Analysis on the class-level routing specialization of OD & IS, produced by AdaMV-MoE with ViT-Small*.