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1. Generated Samples and Overview Video
Please see the attached video for a short overview and

samples of video clips generated by BEE. Please turn Au-
dio ON and please use headphones for higher quality audio
perception.

2. Immersive VR Demo
To better demonstrate the immersive experience of our

proposed audio scene reconstruction task, we built a vir-
tual ‘jazz bar’ in Horizon Worlds with Meta Quest, accord-
ing to the layout and structure of a SoundSpaces-Replica
scene [2]. Given the emitter actions and locations, we syn-
thesized the audio-visual input using provided data from
SoundSpaces, and then deployed BEE to render the target
sounds for listener locations. To indicate locations of the
emitter and the listener, we inserted the emitter and the lis-
tener avatars into the virtual scene and set the motions con-
sistent with the testing settings on SoundSpaces, since the
virtual room is similar to the used Replica scene. In the
VR demo video in the supplementary video, we show the
reconstructed sounds for two listener initial locations and
then moving through the scene, with same emitters. Specif-
ically, listener 1 is close to the piano and far from the sax-
ophone such that it can be heard that there is a minor saxo-
phone sound mix with strong piano and vocals. For listener
2, a stronger saxophone sound is heard since the listener is
closer to the saxophone. Further, the movement of the vo-
cal is perceived well from the sound especially when head-
phones are used.

3. Examples of BEE Generated Audio In Com-
parison to Baselines

In the attached PowerPoint file and in the summary video
we include several examples of BEE-generated audio and
of two audio-visual baseline methods Mono2Bi [3] and AP-
Net [5] for the same scene and same listener. These can
be compared to the ground truth audio. Examples include
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various settings such as navigation, the same listener loca-
tion with different emitters and different listener locations
with same emitters. Inspection of these results shows qual-
itatively the overall higher quality of audio generation by
BEE. In particular, the spatial aspects of the audio scene are
easily noticeable in BEE version vs. other methods, are less
noisy, and of higher precision.

4. Model Configurations

In the Joint Audio-Visual Representation (JAVR) mod-
ule, we use a single ResUNet with a ResNet18 backbone
and output dimension of 32 to extract the image features
Fi. We utilize a single three-layer hierarchical SparseCon-
vNet to learn a 24 × 24 × 5 visual feature volume V′ with
the dimension of 32 for the acoustic propagation space P.
Since all locations are sampled from one regular horizon-
tal plane, we squeeze V ′ to a 24× 24 plane with a channel
dimension C of 64. For the audio input, we resample the
audio with a sampling rate of 16000, then apply a Short-
time Fourier transform (STFT) with a window length of 400
and hop length of 152 to transform the audio waveform to
a 512 × 64 spectrogram, which contains 64 frames of 512
frequencies. We concatenate the real and imaginary parts
of both the left and right ear spectrogram channels together
to form a 4-channel audio input. The audio features are ex-
tracted with a 5-layer convolutional network and then inte-
grated with visual and pose features in the feature space P.
The channel dimensions d of the audio-visual embedding
Q̃ and Q̂ are 128. All the sinusoidal encodings for pose
embeddings apply 8 frequencies of sin and cos functions.

In Integrated Rendering Head (IRH), we introduce two
decoupled branches. For the UpConv branch, we use a 5-
layer Transposed Convolutional Network to generate bin-
aural spectrogram weights based on audio features injected
with audio-visual embedding Q̂ after Cross-Attention. Both
the left and right spectrogram weights contain two channels
for real and imaginary parts of weights respectively. For
the Magnitude branch, a 4-layer MLP is deployed to pre-
dict spectrogram magnitude weight for each frequency-time
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pair based on Q̂ after Cross-Attention and the correspond-
ing embedding of the target time and frequency index.

5. Role of Vision

To further highlight the role of vision, we conducted an
experiment with a model of BEE receiving a fixed image
(from one random viewpoint in one scene) as a visual input
in training and testing for all scenes (FixImgBEE). We com-
pared it with the full model (on all unseen Replica scenes)
with respect to spatial audio reconstruction accuracy for the
entire scene, testing all listener locations for accumulated
STFT, ENV, and loudness errors. Compared to FixImgBEE,
full BEE has acheives better metrics in terms of lower loud-
ness, ENV, and STFT errors by 21%, 12%, and 13%, re-
spectively. These results highlight the importance of visual
information for spatial audio reverberation and continuous
audio scene reconstruction since visuals can facilitate the
effective capture of geometry and material features that are
not directly recoverable from audio.

Methods STFT ↓ ENV ↓ Loudness ↓
FixImgBEE 1.29 8.62 46.30
BEE (Full) 1.12 (-13%) 7.55 (-12%) 36.42 (-21%)

Table 1: Accumulated Error Comparison for All Unseen
Scenes.

6. Sampling Strategy of Audio-Visual Samples

In order to capture sufficient audio-visual information of
the scene, in BEE implementation we place fixed A/V refer-
ence receivers on the midpoints of four edges of the small-
est rectangle that contains the room floor plane (Periphery),
with orientation to the interior of the room.

To investigate the impact of different sampling strategies
on the audio-visual samples, we implemented two other
sampling strategies: Random and Center. The Random
strategy randomly varies the locations and orientation an-
gles of A/V receivers for each scene. While for the Center
strategy, we place the A/V reference receivers with different
orientation angles in the center of each scene. After train-
ing, we compare the results of these two sampling strategies
to the original results of BEE on Matterport 3D scenes in
Table 2, where we place 4 receivers for all strategies. Re-
sults in Table 2 illustrate that BEE has improved accuracy
and perceptual quality when the A/V receivers are fixed at
the edges of the room floor plane.

Indeed, the Random strategy lower quality indicates that
the location of A/V receivers is important and there could
exist A/V receivers of lower quality, e.g., a receiver in the
corner of the scene or facing the walls. The performance
gap can be larger when testing on scenes seen during train-
ing (seen scenes) since the Periphery sampling, i.e. BEE,

Strategies Setting STFT ↓ DPAM ↓ ENV ↓
Random Seen 0.435 0.326 0.462
Center Seen 0.436 0.303 0.473
Periphery (BEE) Seen 0.425 0.274 0.455
Random Unseen 0.457 0.350 0.461
Center Unseen 0.495 0.370 0.556
Periphery (BEE) Unseen 0.438 0.348 0.458

Table 2: Comparison for Sampling Strategies on Matter-
port3D scenes. The Periphery strategy of BEE outperforms
other strategies for both seen and unseen settings.

can learn more reliable scene representation by fixing sen-
sors to locations that capture informative A/V samples.

From Table 2, we observe that for Random sampling the
perceptual quality metric DPAM reduces by 15.95% com-
pared to Periphery (BEE) for seen scenes. Center strat-
egy faces challenges as well, since also may not capture all
needed information to represent the scene and the emitters.
While in Center sampling the visual sensors are placed in
the center and can capture informative visual information
about the scene, since the audio sensors are located close to
each other, the observed audio input will be similar. In par-
ticular, for unseen scenes the input audio samples are crit-
ical for effective audio-visual scene representation and in
these cases the visual representation is less reliable since the
scene have not been seen in training. Therefore, the accu-
racy of Center strategy is expected to be significantly lower
for unseen scenes. Compared with Periphery (BEE), STFT,
DPAM and ENV metrics of BEE with Center strategy are
less accurate by 11.52%, 5.9% and 17.63% respectively.

7. Robustness of A/V Sensor Density

To verify the robustness of the density of A/V sensors
when testing on new scenes, we implement a density analy-
sis experiment. After training with 4 A/V sensors on edge,
we test the trained model with selecting a random subset
of these sensors as functional sensors to reconstruct the tar-
get sound. We set the sensor number in the subset from 1
to 4, where 4 means all sensors in the training process are
used for testing. The results are reported in Table 3. STFT,
DPAM and ENV metrics remain robust when using 2-4 sen-
sors. After reducing the number of sensors to 1, STFT and
ENV errors increase, while the perceptual quality metric
DPAM can remains relatively stable.

8. Audio-Visual Feature Plane

JAVR module of BEE constructs an audio-visual repre-
sentation of feature space for the acoustic propagation of
the scene. In the original implementation, we use 24 × 24
plane as the feature space. To investigate the impact of the
plane dimensions and its discretization, we set four differ-



Number STFT ↓ DPAM ↓ ENV ↓
1 A/V sensor 0.579 0.383 0.594
2 A/V sensors 0.478 0.354 0.503
3 A/V sensors 0.453 0.352 0.481
4 A/V sensors 0.438 0.348 0.458

Table 3: Robustness Analysis of Different Sensor Density
on unseen Matterport3D scenes. BEE remains relatively
robust when a lower sensor density is used with fewer sen-
sors for testing.

ent spatial sizes for the feature plane: 12× 12, 24× 24, and
48 × 48. Except for plane dimensions, we keep other con-
figurations fixed and conduct comprative experiments re-
ported in Table 4. In particular, we compare the accuracy of
the generated waveforms for different spatial dimensions.
For both settings, the reconstruction accuracy of BEE im-
proves when the spatial dimension increases from 12 × 12
to 24×24. When the spatial dimension is extended beyond,
i.e., 48× 48, the accuracy for unseen emitters does not im-
prove further and even decreases due to overfitting. Thus
for BEE implementation the plane dimensions are chosen
as 24× 24 .

Spatial Size Setting STFT ↓ DPAM ↓ ENV ↓
12× 12 Seen 0.441 0.294 0.475
24× 24 Seen 0.425 0.274 0.455
48× 48 Seen 0.448 0.315 0.489
12× 12 Unseen 0.467 0.369 0.513
24× 24 Unseen 0.438 0.348 0.458
48× 48 Unseen 0.454 0.383 0.458

Table 4: Comparison for Different Spatial Dimensions
of Audio-Visual Feature Plane on Matterport3D Scenes.
Dimension 24 × 24 used in the final BEE model performs
better than planes of other dimensions for both seen and
unseen settings.

9. Spatial Enhancement
We enhance visual features based on the spatial loca-

tions of M, L in the JAVR module since they can impact
sound propagation paths. To justify this setting, we also
implemented a variant that enhances joint audio-visual fea-
ture plane with receiver-listener locations for better compar-
ison. However, this variant increases the number of model
parameters by 160,000. Furthermore, the perfromance of
the variant reduces accuracy, according to DPAM metric
by 5.5% and causing approximately 1% higher errors in
STFT and ENV, testing on all Matterport scenes. This is
since knowledge of locations lack physical significance, and
even though implicitly reveal emitter locations do not assist
with enhancement of audio features captured by receivers.

Therefore we only enhance visual features with the spatial
locations.

10. Model Finetuning

To investigate the cost of adapting a pre-trained model
to unseen scenes, we randomly select 25% scenes from
unseen Matterport3D scenes and finetune the pre-trained
models on each scene separately on 3000 emitter-receiver-
listener samples with different emitters and emitted sound
clips. After finetuning, we test the models in each finetuned
scene with novel emitter-receiver-listener samples and emit-
ted sounds. In Table 5, we compare our reconstruction re-
sults of finetuned BEE with the finetuning results of other
baselines. Besides the three metrics: STFT, DPAM and
ENV, we also report the average loudness map error of the
scenes. Before finetuning, BEE unseen can achieve higher
perceptual quality DPAM than other methods even after
finetuning. After a quick finetuning on 3000 samples, BEE
exhibits improved accuracy on all metrics significantly and
outperform all other baselines by a large margin, according
to the results in Table 5.

Method STFT ↓ DPAM ↓ ENV ↓ Loudness ↓
AViTAR [1] 0.134 0.347 0.283 0.200
Few-ShotRIR [4] 0.194 0.344 0.660 0.307
Mono2Bi [3] 0.158 0.314 0.432 0.193
APNet [5] 0.155 0.311 0.421 0.208
BEE unseen 0.157 0.263 0.446 0.342
BEE 0.116 0.222 0.243 0.161

Table 5: Finetuning Results on Matterport3D Scenes.
We compare BEE with other baselines after a quick finetun-
ing on 3000 samples in each unseen Matterport3D scene.
BEE achieved higher accuracy and outperformed other
baselines by a large margin.

11. Multiple Emitters

In dynamic audio scenes there are multiple emitters that
move. Furthermore, there could be additional emitters in
the target scenes. In the training data, emitter sets contain
only 1-2 emitters. In testing, the emitter numbers can be
more than 2. In Figure 1, we place 1, 2, 5, 7 emitters in
each scene for unseen Matterpor3D scenes and report BEE
reconstructed DPAM metric and compare it to audio-visual
baselines APNet [5] and Mono2Bi [3]. For each scene, we
randomly test 10 target listener locations for each emitter
number and average the DPAM error. The results show that
BEE achieves better DPAM metrics indicating better quality
and robustness across different numbers of emitters while
for other methods DPAM metric increases with increasing
number of emitters.



Figure 1: Perceptual Quality Comparison with Different
Emitter Numbers. We compare the DPAM (Lower is bet-
ter) of BEE (Ours) with APNet and Mono2Bi on 1, 2, 5 and
7 emitters respectively. BEE achieves better and more sta-
ble perceptual quality than the compared two methods even
when the number of emitters increases.

12. Dataset License
SoundSpaces [2] is licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0).

References
[1] Changan Chen, Ruohan Gao, Paul Calamia, and Kristen

Grauman. Visual acoustic matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18858–18868, 2022. 3

[2] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vi-
cenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu,
Philip Robinson, and Kristen Grauman. Soundspaces: Audio-
visual navigation in 3d environments. In European Confer-
ence on Computer Vision, pages 17–36. Springer, 2020. 1,
4

[3] Ruohan Gao and Kristen Grauman. 2.5 d visual sound. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 324–333, 2019. 1, 3

[4] Sagnik Majumder, Changan Chen, Ziad Al-Halah, and Kris-
ten Grauman. Few-shot audio-visual learning of environment
acoustics, 2022. 3

[5] Hang Zhou, Xudong Xu, Dahua Lin, Xiaogang Wang, and Zi-
wei Liu. Sep-stereo: Visually guided stereophonic audio gen-
eration by associating source separation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XII 16, pages 52–69.
Springer, 2020. 1, 3


