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1. Dataset Statistics
Table 1 shows the statistics of our training noisy train-

ing set (NIH [8] and ChestXpert (CXP) [4]) and clean test-
ing sets (OpenI [3] and PadChest [1]). Due to inconsisten-
cies in the number of labels for each dataset, we trim the
original datasets and only keep the samples that contain la-
bels present in all datasets based on [2, 5]. After our data
pre-processing, there are 83,672 frontal-view images with
14 common chest radiographic observations for NIH [8]
dataset where the corresponding testing sets for OpenI [3]
and PadChest [1] contain 2,917 and 14,714 frontal-view im-
ages respectively. For CXP, we have 170,958 frontal-view
images with 8 chest radiographic observations where the
corresponding testing set for OpenI [3] and PadChest [1]
contain 2,823 and 12,885 frontal-view images, respectively.

2. Further Ablation Studies
We evaluate the number of KNN neighboring samples

that are required for a clean re-labelling. We measure the
precision and recall for the detection of noisy-labels of our
graph-based relabelling method in Fig. 1 as a function of
the threshold of the minimum number of nearest neighbors
containing each class. For example, if the KNN threshold is
4, then a particular label of a sample is set to 1 only if there
are at least 4 neighbors that share the same label. Note that
the measures are computed in a label-wise manner, and we
consider the flipping rate pl at 20% and the percentage of
noisy samples ps ∈ {20%, 40%, 60%}. We observe a lower
recall rate for lower values of K because the KNN label
propagation under the multi-label scenario tends to be nois-
ier for small values of K. We achieve the highest recall rate
when this threshold is between 4 and 6 nearest neighbours,
which means that when we have at least 4 samples in the K
nearest neighbour that share the same label, it is most likely
a true label.

*First two authors contributed equally to this work.

3. Visualisation of Smoothing Techniques

To visualise the performance of different label smooth-
ing techniques, we plot the t-SNE [7] for a toy problem.
More specifically, we first generate two isotropic Gaussian
clusters as the clean set (Fig. 2a) and randomly inject 20%
of symmetric noise (Fig. 2b) to form a noisy set. We show
that our BoMD demonstrates a better tradeoff when cor-
recting the labels since it re-labels the noisy samples with-
out being overconfident in the detection (like shown by
GLS [9]) and without over-smoothing the labels (like dis-
played by LS [6]). Note that we set the smoothing parame-
ter r to 0.6 and -0.4 respectively for LS [6] and GLS [9].

4. Additional Results

4.1. Per-finding results

We show per-finding results over all available findings
for NIH [8] in Tables 3 and 4 and for CheXpert [4] in Ta-
bles 5 and 6 .

4.2. Hyper-parameter sensitivity

Tab. 2 studies the four hyper-parameters (λ, γ, M and
K) of BoMD. In general, for λ, we note that relying too
much on the pseudo-labels from the graph (λ = 0.2) or the
original noisy labels (λ = 1.0) worsens the performance,
with the best result achieved with a balanced λ = 0.6.
We noticed that the method is robust to γ and M with lit-
tle variation in results. As for K, values larger than 10
over-smooth the decision boundary of our classifier, causing
under-fitting. The values λ = 0.6 and γ = 0.25, M = 3,
and K = 10 reach the best results.

4.3. Evaluation for Descriptors from MID

Visualisation of distance distribution. To verify the sep-
aration of positive descriptors (labelled as 1) and negative
descriptors (labelled as 0) based on their edge weight, we



Train Test

Datasets NIH [8] CXP [4] OpenI [3] PadChest [1]

Train on NIH 83,672 (14) - 2,971 (14) 14,714 (14)
Train on CXP - 170,958 (8) 2,823 (8) 12,885 (8)

Table 1: Statistics for all datasets after data pre-processing, where the digit on the left is the total number of samples and the
digit inside brackets is the number of classes.

Experiments Mixup Coefficient Number of Descriptors K-nearest neighbour

Settings λ OpenI PadChest γ OpenI PadChest M OpenI PadChest K OpenI PadChest

AUC

0.2 88.39 85.52 0.05 89.14 86.05 1 88.34 86.02 5 89.20 86.15
0.4 88.56 85.93 0.15 87.87 86.17 3 89.52 86.50 10 89.52 86.50
0.6 89.52 86.50 0.25 89.52 86.50 5 88.92 86.39 20 88.23 85.79
0.8 88.37 86.29 0.35 88.40 86.48 7 89.03 86.43 50 87.59 85.49
1.0 88.31 86.21 0.45 88.46 86.46 9 88.45 86.29 100 87.36 85.48

Table 2: Ablation study of the hyper-parameters using mean AUC. Models are trained on NIH [8] and tested on OpenI [3]
and PadChest [1]. Note that for each hyper-parameter, we fix the others to their best values (i.e., λ = 0.6, γ = 0.25, M = 3
and K = 10).

performed an analysis on a dataset consisting of 12 classes.
Each class contained 4,000 samples, along with its corre-
sponding semantic descriptors from the NIH dataset [8].
For each class, we denote positive samples’ descriptors as
“1”, and negative samples’ descriptors as “0”. The analy-
sis involved examining the distribution of L2 distance, and
the results are presented in Figure 3. Our findings suggest
that, on average, positive descriptors are closer to their cor-
responding semantic descriptors than negative descriptors,
which proves the effectiveness of our MID module.
Visualisation of latent space. To visualise the descriptors’
distribution in the latent space, we plot the t-SNE [7] for 12
classes with 4,000 samples per class sampled from NIH [8],
as shown in Fig. 4. For each class, we denote positive sam-
ples’ descriptors as +, negative samples’ descriptors as ◦
and semantic descriptors as ×. We show that the seman-
tic descriptors are mostly surrounded by class-related de-
scriptors (+), which varied the clustering effect of our MID
module. Such clustering effect will benefit our graph-based
smooth re-labelling as shown in Sec 3
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Figure 1: Label-wise precision and recall of our KNN propagated label under ȳ w.r.t the clean annotation from PadChest.
The horizontal axis shows a threshold of the minimum number of nearest neighbors containing each class.
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Figure 2: Visualisation of different label smoothing techniques. The color of each data point indicates the confidence score.
We start with two isotropic Gaussian clusters in (a) as the clean set where red points indicate class 1 and blue points represent
class 2. We randomly inject 20% of symmetric noise to form the noisy set in (b). We compare our method (in (d)) with two
baseline methods, namely: label smoothing (LS) [6] (in (c)) and generalised label smoothing (GLS) [9] (in (e)). We show
that our method alleviates the noisy label problem by modifying the confidence score based on the nearest neighbors, while
LS pushes the labels toward the uniform distribution and GLS pushes the labels toward the sharp binary distribution. Note
that GLS has a different scale for confidence scale which is from -0.2 to +1.2, while the others have a range from 0 to 1.

Table 3: Disease-level testing AUC results for models trained on NIH.

Models Hermoza et al CAN DivideMix FINE ELR NVUM

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Atelectasis 86.85 83.59 84.83 79.88 70.98 73.48 77.51 67.70 86.21 85.69 88.16 85.66
Cardiomegaly 89.49 91.25 90.87 91.72 74.74 81.63 77.93 84.54 90.79 92.81 90.57 92.94
Effusion 94.05 96.27 94.37 96.29 84.49 97.75 74.39 86.76 94.74 96.67 93.64 96.56
Infiltration 77.48 70.61 77.88 73.78 84.03 81.61 73.41 67.28 78.92 73.82 74.30 72.51
Mass 95.72 86.93 87.47 85.81 71.31 74.41 57.45 69.54 81.90 84.51 93.06 85.93
Nodule 81.68 75.99 80.71 74.14 57.35 63.89 59.43 57.66 86.22 75.59 88.79 75.56
Pneumonia 87.15 75.73 84.79 76.49 71.65 72.32 56.22 60.46 88.99 80.28 90.90 82.22
Pneumothorax 75.34 74.55 82.21 79.73 75.56 75.46 59.88 64.46 78.65 78.47 85.78 79.50
Edema 84.31 97.78 82.80 96.41 80.71 85.81 58.18 95.20 85.57 97.58 86.56 95.70
Emphysema 83.26 79.81 81.26 78.06 64.81 59.91 43.31 50.72 82.79 79.87 83.70 79.38
Fibrosis 85.85 96.46 83.17 93.20 76.96 84.71 61.97 88.68 92.07 97.42 91.67 97.61
Pleural Thicken 77.99 71.85 77.59 67.87 62.98 58.25 63.17 54.33 83.45 72.01 84.82 74.80
Hernia 92.90 89.90 87.37 86.87 70.34 72.11 64.86 74.56 95.77 93.37 94.28 93.02
Mean AUC 85.54 83.90 84.26 83.10 72.76 75.49 63.67 70.91 86.62 85.24 88.17 85.49



Table 4: Disease-level testing AUC results for models trained on NIH.

Models NPC NCR LS OLS GLS BoMD

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Atelectasis 86.04 85.23 83.80 85.46 85.34 84.74 87.27 85.18 88.23 83.00 87.91 86.19
Cardiomegaly 91.42 92.12 89.42 91.45 88.08 89.17 84.59 89.83 89.12 91.40 91.37 92.17
Effusion 95.58 96.19 93.96 95.89 94.54 95.63 94.28 96.75 93.67 96.36 95.28 96.71
Infiltration 68.76 64.08 60.48 67.98 72.26 74.20 76.10 76.19 82.08 71.27 81.65 76.64
Mass 80.20 86.04 85.00 85.98 88.08 80.56 82.79 84.80 75.12 80.67 92.31 88.48
Nodule 87.60 75.68 85.12 75.60 86.44 74.82 83.42 75.27 82.10 74.34 84.05 75.28
Pneumonia 91.01 76.87 88.87 76.40 83.50 76.17 87.18 78.20 85.65 74.83 89.99 78.71
Pneumothorax 84.28 79.22 83.07 76.98 74.07 76.10 75.89 80.02 73.93 76.45 88.89 85.82
Edema 82.27 92.40 85.66 93.87 83.38 88.23 87.31 89.55 85.92 93.01 87.60 98.68
Emphysema 82.05 80.87 82.36 75.80 76.94 73.10 80.94 78.15 75.16 74.21 85.28 81.94
Fibrosis 87.53 91.50 90.67 94.57 92.09 96.43 90.19 95.35 91.06 95.29 94.56 97.44
Pleural Thicken 87.37 76.06 82.66 76.62 82.83 72.82 84.12 70.55 80.10 68.14 86.94 71.53
Hernia 96.60 94.17 94.69 92.74 80.85 70.11 91.95 85.84 87.29 81.38 98.57 94.22
Mean AUC 86.21 83.88 85.06 83.79 83.72 80.93 85.08 83.51 83.80 81.56 89.57 86.45

Table 5: Disease-level testing AUC results for models that trained on CheXpert.

Models Hermoza et al CAN DivideMix FINE ELR NVUM

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Cardiomegaly 86.12 87.20 82.83 85.89 79.53 85.42 83.62 83.99 90.48 87.46 85.15 88.48
Edema 87.92 94.35 86.46 97.47 81.24 83.41 86.43 87.07 90.88 96.12 87.35 97.21
Pneumonia 65.56 57.15 61.88 63.38 55.98 51.20 55.58 55.58 61.59 64.13 64.42 67.89
Atelectasis 78.40 75.65 80.13 72.87 72.74 68.34 72.87 72.87 79.63 73.68 80.81 75.03
Pneumothorax 62.09 78.65 74.69 79.50 75.49 79.98 65.34 68.85 74.12 83.95 82.18 83.32
Effusion 87.00 93.94 88.43 92.92 83.75 88.91 85.92 85.92 86.65 92.42 83.54 89.74
Fracture 57.47 53.77 59.96 60.44 63.87 62.23 51.97 62.50 56.75 62.00 57.02 62.67
Mean AUC 74.94 77.24 76.34 78.92 73.23 74.21 71.68 73.83 77.16 79.97 77.21 80.62

Table 6: Disease-level testing AUC results for models that trained on CheXpert.

Models NPC NCR LS OLS GLS BoMD

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Cardiomegaly 80.33 86.43 90.10 86.84 85.53 83.42 83.58 86.29 88.22 87.30 90.85 89.88
Edema 82.35 79.09 90.11 98.26 89.72 99.43 85.17 95.69 87.92 97.49 89.89 98.76
Pneumonia 62.31 64.52 58.80 59.87 49.64 50.41 64.18 56.48 59.49 63.64 65.35 66.10
Atelectasis 81.29 76.13 79.01 72.22 75.13 69.30 70.85 71.75 76.71 73.32 80.01 74.33
Pneumothorax 82.32 82.35 78.06 86.15 73.05 78.33 80.10 83.36 77.53 77.58 82.99 86.04
Effusion 78.71 86.65 85.62 91.57 84.70 90.97 84.64 91.83 85.19 91.94 87.37 93.07
Fracture 59.92 65.95 56.80 60.63 52.27 55.52 67.13 58.60 60.44 60.32 63.72 64.12
Mean AUC 75.32 77.30 76.93 79.36 72.86 75.34 76.52 77.72 76.50 78.80 80.03 81.76



Figure 3: L2 distance between positive/negative descriptors and semantic descriptor



Figure 4: Visualisation of descriptor distribution in latent space.


