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In the supplementary material, we present addi-
tional results for CATR on the CUB-200-2011 [13] and
ILSVRC [12] datasets in Appendix A. Additionally, we
provide additional ablation studies on ILSVRC [12] in Ap-
pendix B. Moreover, we compare the parameter complexity
of CATR with other methods on CUB-200-2011 [13] in Ap-
pendix C. Finally, we analyze the limitation of our method
in Appendix D and present more localization visualizations
of the proposed CATR in Appendix E.

A. Additional results

A.1. Complete Performance Comparison

Tab. 2 and Tab. 3 present additional performance com-
parisons of CATR with state-of-the-art methods on the
CUB-2011-200 test set and the ILSVRC validation set, re-
spectively. The results demonstrate that CATR achieves
competitive classification accuracy. Specifically, on the
CUB-200-2011 dataset, CATR reaches 83.72% Top-1 Cls
and 96.82% Top-5 Cls, which are slightly lower than
LCTR [2]. On the ILSVRC dataset, our method achieves
the best 93.64% Top-5 Cls and is slightly lower than
FAM [10] in Top-1 Cls (77.25% vs 77.63%). While fewer
images are correctly classified, our method still achieves
higher localization accuracy than LCTR [2] and FAM [10],
which further suggests the effectiveness of CATR. Note that
Top-1 and Top-5 Loc consider both localization and classi-
fication accuracy, i.e., a prediction is correct only if both
localization and classification are correct.

A.2. Additional Performance Comparison

Tab. 4 presents a comparison of CATR with methods
that adopt a separate localization-classification pipeline. It
is worth noting that these multi-stage approaches achieve
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Figure 1. Analyses of loss weights in the training phase.

Method Input #Params. MACs Top-1 Loc.
size (M) (G) (%)

VGG16-CAM [22] 2242 19.64 16.31 44.15
DeitS-TS-CAM [4] 2242 25.10 5.29 71.30
DeitS-TS-CAM∗ [4] 2242 22.36 4.38 73.10
DeitS-LCTR [2] 2242 25.76 4.50 79.20
DeitS-CATR (Ours) 2242 22.92 4.49 79.62

Table 1. Comparison of parameters and MACs. Note that Top-1
Loc. is evaluated on the CUB-200-2011 test set, ∗ indicates the
re-implement method.

remarkable results, but require separate networks for local-
ization and classification that must undergo distinct train-
ing phases. For instance, SPOL [14] employs three dis-
tinct networks for WSOL. The first two separate modi-
fied ResNet50 are used for generating class activation maps
and foreground segmentation, respectively. An additional
DenseNet161/EffcientNet-B7 is then employed for classifi-
cation. In contrast, the proposed CATR utilizes only one
network, offering significant advantages in terms of effi-
ciency. Additionally, CATR achieves competitive localiza-
tion performance, e.g., 79.62% vs 80.68% Top-1 Loc on the
CUB-200-2011 dataset.



Methods Backbone Loc. Acc Cls. Acc
Top-1 Top-5 GT-known Top-1 Top-5

CAM [22] GoogLeNet 41.06 50.66 55.10 73.80 91.50
DANet [18] GoogLeNet 49.45 60.46 67.03 71.20 90.60
ADL [3] InceptionV3 53.04 − − 74.55 −
SPA [11] InceptionV3 53.59 66.50 72.14 73.51 91.39
FAM [10] InceptionV3 70.67 − 87.25 81.25 −
CAM [22] VGG16 44.15 52.16 56.00 76.60 92.50
ADL [3] VGG16 52.36 − 75.41 65.27 −
ACoL [20] VGG16 45.92 56.51 62.96 71.90 −
DANet [18] VGG16 52.52 61.96 67.70 75.40 92.30
MEIL [9] VGG16 57.46 − 73.84 74.77 −
SPA [11] VGG16 60.27 72.50 77.29 76.11 92.15
FAM [10] VGG16 69.26 − 89.26 77.26 −
ORNet [17] VGG16 67.73 80.77 86.20 77.00 93.00
BAS [16] VGG16 71.33 85.33 91.00 77.49 93.18
BGC [6] VGG16 70.83 88.07 93.17 − −
TS-CAM [4] Deit-S 71.30 83.80 87.70 80.30 94.80
LCTR [2] Deit-S 79.20 89.90 92.40 85.00 97.10
SCM [1] Deit-S 76.40 91.60 96.60 78.50 94.50
CATR (Ours) Deit-S 79.62 92.08 94.94 83.72 96.82

Table 2. Comparison of CATR with the state-of-the-art methods on the CUB-200-2011 [13] test set.

Methods Backbone Loc. Acc Cls. Acc
Top-1 Top-5 GT-known Top-1 Top-5

CAM [22] VGG16 42.80 54.86 59.00 66.60 88.60
ADL [3] VGG16 44.92 − − − −
ACoL [20] VGG16 45.83 59.43 62.96 67.50 88.00
I2C [21] VGG16 47.41 58.51 63.90 69.40 89.30
MEIL [9] VGG16 46.81 − − 70.27 −
FAM [10] VGG16 51.96 − 71.73 70.90 −
ORNet [17] VGG16 52.05 63.94 68.27 71.60 90.40
BAS [16] VGG16 52.96 65.41 69.64 70.84 90.46
BGC [6] VGG16 49.94 63.25 68.92 − −
CAM [22] InceptionV3 46.29 58.19 62.68 73.30 91.80
ADL [3] InceptionV3 48.71 − − 72.83 −
DANet [18] GoogLeNet 47.53 58.28 − 72.50 91.40
I2C [21] InceptionV3 53.11 64.13 68.50 73.30 91.60
GC-Net [8] InceptionV3 49.06 58.09 − 77.40 93.60
SPA [11] InceptionV3 52.73 64.27 68.33 73.26 91.81
FAM [10] InceptionV3 55.24 − 68.62 77.63 −
TS-CAM [4] Deit-S 53.40 64.30 67.60 74.30 92.10
LCTR [2] Deit-S 56.10 65.80 68.70 77.10 93.40
SCM [1] Deit-S 56.10 66.40 68.80 76.70 93.00
CATR (Ours) Deit-S 56.90 66.64 69.25 77.25 93.64

Table 3. Comparison of CATR with state-of-the-art methods on the ILSVRC [12] validation set.

B. Additional ablation studies

In Fig. 1, we further show the changes in four parameters
using the automatic weighted loss mechanism (ALM) [7]
on the ILSVRC [12] dataset. We also observe that λ2 is
consistently the largest during training, which supports the
argument that CSM establishes the connection between the
attention maps and the specific classes. Moreover, the re-
sults suggest that OCM plays a supporting role in refining
the object regions, as the values of λ3 and λ4 decrease in
the training phase.

C. Parameter Complexity
In Tab. 1, we present a comparison of the parame-

ter complexity with other methods. Our method (with
22.92M parameters and 4.49MACs) outperforms the CNN-
based VGG16-CAM [22] (with 19.64M parameters and
16.31MACs) by 35.47% (79.62% vs 44.15%). Further-
more, our method performs much better than the benchmark
method [4] (79.62% vs 73.10%) with a slightly increased
number of parameters (22.92M vs 22.36M). Notebly, com-
pared with LCTR [2], CATR obtains 0.42% improvement
of TOP-1 Loc. with a 2.84M parameter reduction.



Methods Backbone CUB-200-2011 [13] Loc. Acc ILSVRC [12] Loc. Acc
Localization Classification Top-1 Top-5 GT-known Top-1 Top-5 GT-known

PSOL [19] InceptionV3 InceptionV3 65.51 83.44 − 54.82 63.25 65.21
PSOL [19] ResNet50 ResNet50 70.68 86.64 90.00 53.98 63.08 65.44
PSOL [19] DenseNet161 DenseNet161 74.97 89.12 93.01 55.31 64.18 66.28
PSOL [19] DenseNet161 EfficientNet-B7 77.44 89.51 93.01 58.00 65.02 66.28
SLT-Net [5] VGG16 VGG16 67.80 − 87.60 51.20 62.40 67.20
SLT-Net [5] InceptionV3 InceptionV3 66.10 − 86.50 55.70 65.40 67.60
SPOL [14] ResNet50† DenseNet161 79.74 93.69 96.46 56.40 66.48 69.02
SPOL [14] ResNet50† EfficientNet-B7 80.12 93.44 96.46 59.14 67.15 69.02
ISIC [15] ResNet50 ResNet50 80.68 94.08 97.32 59.61 67.84 70.01
CATR (Ours) Deit-S 79.62 92.08 94.94 56.90 66.64 69.25

Table 4. Comparison with the methods based on a separate localization-classification pipeline. Note that ‘†’ indicates the backbone is
modified.
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Figure 2. The failure cases on ILSVRC with CAM [22], TS-
CAM [4], and our proposed CATR. The ground-truth bounding
boxes are depicted in red. All methods demonstrate poor localiza-
tion performance when there are multiple instances in an image.

D. Limitation
As depicted in Fig. 2, our method exhibits suboptimal

performance in separating multiple instances within an im-
age. This is primarily due to the lack of instance-level su-
pervision, which makes it difficult for the weakly super-
vised object localization task to differentiate between dif-
ferent objects. Therefore, in order to address this issue, it
would be worth exploring new methods in future research.

E. Visualization
In Fig. 3, we present additional visualizations of the

pseudo maps generated by self-attention maps and utilized
to supervise category-aware map learning. It is evident
from the visualizations that the pseudo maps contain class-
specific features, which effectively highlight the robust ob-
ject regions.

In Fig. 4, we visualize pure localization maps of our
method. We can observe that our method preserves long-
range feature dependency well and covers the complete ex-
tent of the objects.

In Fig. 5 and Fig. 6, we show the additional localiza-

tion results on the CUB-2011-200 test set and ILSVRC val-
idation set, respectively. We can observe that the proposed
CATR maintains long-range feature dependency effectively
and accurately localizes the entire object.



Image Pseudo Map Localization Map Image Pseudo Map Localization Map

Figure 3. Visualization of the pixel-level pseudo maps Mocm and localization maps Mfuse. The ground-truth bounding boxes are high-
lighted in red, and the predicted bounding boxes are highlighted in green.
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Figure 4. Visualization of localization maps on the CUB-200-2011 [13] and ILSVRC [12] datasets.



Figure 5. Visualization of the localization results on CUB-200-2011 [13]. The ground-truth bounding boxes are highlighted in red, and the
predicted bounding boxes are highlighted in green.



Figure 6. Visualization of the localization results on ILSVRC [12]. The ground-truth bounding boxes are highlighted in red, and the
predicted bounding boxes are highlighted in green.



References
[1] Haotian Bai, Ruimao Zhang, Jiong Wang, and Xiang Wan.

Weakly supervised object localization via transformer with
implicit spatial calibration. ECCV, pages 612–628, 2022. 2

[2] Zhiwei Chen, Changan Wang, Yabiao Wang, Guannan Jiang,
Yunhang Shen, Ying Tai, Chengjie Wang, Wei Zhang, and
Liujuan Cao. Lctr: On awakening the local continuity of
transformer for weakly supervised object localization. In
AAAI, volume 36, pages 410–418, 2022. 1, 2

[3] Junsuk Choe and Hyunjung Shim. Attention-based dropout
layer for weakly supervised object localization. In IEEE
CVPR, pages 2219–2228, 2019. 2

[4] Wei Gao, Fang Wan, Xingjia Pan, Zhiliang Peng, Qi Tian,
Zhenjun Han, Bolei Zhou, and Qixiang Ye. Ts-cam: Token
semantic coupled attention map for weakly supervised object
localization. In IEEE ICCV, pages 2886–2895, 2021. 1, 2, 3

[5] Guangyu Guo, Junwei Han, Fang Wan, and Dingwen Zhang.
Strengthen learning tolerance for weakly supervised object
localization. In IEEE CVPR, 2021. 3

[6] Eunji Kim, Siwon Kim, Jungbeom Lee, Hyunwoo Kim, and
Sungroh Yoon. Bridging the gap between classification and
localization for weakly supervised object localization. In
IEEE CVPR, pages 14258–14267, 2022. 2

[7] Lukas Liebel and Marco Körner. Auxiliary tasks in multi-
task learning. arXiv preprint arXiv:1805.06334, 2018. 2

[8] Weizeng Lu, Xi Jia, Weicheng Xie, Linlin Shen, Yicong
Zhou, and Jinming Duan. Geometry constrained weakly su-
pervised object localization. In ECCV, pages 481–496, 2020.
2

[9] Jinjie Mai, Meng Yang, and Wenfeng Luo. Erasing inte-
grated learning: A simple yet effective approach for weakly
supervised object localization. In IEEE CVPR, pages 8766–
8775, 2020. 2

[10] Meng Meng, Tianzhu Zhang, Qi Tian, Yongdong Zhang, and
Feng Wu. Foreground activation maps for weakly supervised
object localization. In IEEE ICCV, pages 3385–3395, 2021.
1, 2

[11] Xingjia Pan, Yingguo Gao, Zhiwen Lin, Fan Tang, Weim-
ing Dong, Haolei Yuan, Feiyue Huang, and Changsheng Xu.
Unveiling the potential of structure preserving for weakly su-
pervised object localization. In IEEE CVPR, pages 11642–
11651, 2021. 2

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. In IJCV, volume 115,
pages 211–252. Springer, 2015. 1, 2, 3, 5, 7

[13] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. (CNS-TR-2011-001), 2011. 1, 2, 3, 5, 6

[14] Jun Wei, Qin Wang, Zhen Li, Sheng Wang, S Kevin Zhou,
and Shuguang Cui. Shallow feature matters for weakly su-
pervised object localization. In IEEE CVPR, pages 5993–
6001, 2021. 1, 3

[15] Jun Wei, Sheng Wang, S Kevin Zhou, Shuguang Cui, and
Zhen Li. Weakly supervised object localization through

inter-class feature similarity and intra-class appearance con-
sistency. In ECCV, pages 195–210, 2022. 3

[16] Pingyu Wu, Wei Zhai, and Yang Cao. Background activa-
tion suppression for weakly supervised object localization.
In IEEE CVPR, pages 14228–14237, 2022. 2

[17] Jinheng Xie, Cheng Luo, Xiangping Zhu, Ziqi Jin, Weizeng
Lu, and Linlin Shen. Online refinement of low-level feature
based activation map for weakly supervised object localiza-
tion. In IEEE CVPR, pages 132–141, 2021. 2

[18] Haolan Xue, Chang Liu, Fang Wan, Jianbin Jiao, Xiangyang
Ji, and Qixiang Ye. Danet: Divergent activation for weakly
supervised object localization. In IEEE ICCV, pages 6589–
6598, 2019. 2

[19] Chen-Lin Zhang, Yun-Hao Cao, and Jianxin Wu. Rethinking
the route towards weakly supervised object localization. In
IEEE CVPR, pages 13460–13469, 2020. 3

[20] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and
Thomas S Huang. Adversarial complementary learning for
weakly supervised object localization. In IEEE CVPR, pages
1325–1334, 2018. 2

[21] Xiaolin Zhang, Yunchao Wei, and Yi Yang. Inter-image
communication for weakly supervised localization. In
ECCV, pages 271–287, 2020. 2

[22] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In IEEE CVPR, pages 2921–2929, 2016.
1, 2, 3


