
A. Training Details
Our training receipt follows most of the techniques used

in DeiT [32]. In Table 5, we provide the default setting for
compression rate searching. In this case, we initialize the
backbone with their official pre-trained models, fix the net-
work parameters, and train the proposed Differentiable Dis-
crete Proxy for 3 epochs. In the first epoch, we optionally
set λf in Eq. (13) to 0 for warm-up. To fine-tune the com-
pressed models, we fix the compression rate and update the
network parameters for 30 epochs. The default settings for
fine-tuning are provided in Table 6. During compression
rate searching, we employ attention masking to simulate to-
ken dropping, while in the fine-tuning process, we directly
drop the redundant tokens. Any differences from the default
DeiT recipe are highlighted in bold in the tables.

Table 5: Compression rate searching training settings.

cofig value
optimizer AdamW

learning rate 0.01
minimal learning rate 0.001
learning rate schedule cosine decay

weight decay 0
batch size 1024

training epochs 3
augmentation RandAug(9, 0.5)
LabelSmoth 0.1

DropPath 0.1
Mixup 0.8
CutMix 1.0

Table 6: Fine-tuning training settings.

cofig value
optimizer AdamW

learning rate 2e-5
minimal learning rate 1e-6
learning rate schedule cosine decay

weight decay 0.05
batch size 1024

training epochs 30
augmentation RandAug(9, 0.5)
LabelSmoth 0.1

DropPath 0.1
Mixup 0.8
CutMix 1.0

B. Computational Cost Constraint Details
This section provides more details about the compu-

tational cost constraint of DiffRate, including traditional

FLOPs, and hardware-aware metrics like latency and power
consumption.

B.1. FLOPs Calculation

Algorithm 2 FLOPs Calculation.
Input: block-wise pruning compression rate αp = {αl

p}Ll=1

and merging compression rate αm = {αl
m}Ll=1, embedding

size C.
Output: FLOPs F(αp,αm).

1: α0 = 0
2: F(αp,αm) = 0 ▷ FLOPs
3: for l=1 to L do
4: F(αp,αm)+= 4NC2 + 2N2C ▷ Attention
5: αl = max(αl−1, αl

p, α
l
m)

6: N = N(1− αl)
7: F(αp,αm)+= 8NC2 ▷ MLP
8: end for
9: return F(αp,αm)

By utilizing the compression rate obtained from our pro-
posed DiffRate, we can calculate the corresponding FLOPs
F(αp,αm) using Algorithm 2. The final FLOPs calcula-
tion also includes the patch embedding layer and classifier,
which are excluded from Algorithm 2 for clarity. Addi-
tionally, we utilize the straight-through estimator (STE) for
backpropagation in the max operation of Line 5.

Table 7: Gemmini Search Space. The Gemmini search
space is determined by the number of tiles/meshes in each
row and column, which indicates its computational re-
sources, while the bank number/capacity of the scratch-
pad memory and accumulator determines its memory re-
sources. The buswidth sets an upper limit on the communi-
cation speed between the scratchpad memory and computa-
tion modules.

parameters type search space
Tiles in a row int 1,2,4,8

Tiles in a column int 1,2,4,8
Meshes in a row int 4,8,16,32

Meshes in a column int 4,8,16,32
Buswidth (bit) int 64,128,256,512

Bank number of scratchpad memory int 1,2,4,8,16
Capacity of scratchpad memory (MB) int 0.25,0.5,1,2,4

Capacity of accumulator (KB) int 64,128,256,512,1024

B.2. Latency and Power Constraint

Apart from considering FLOPs, we can incorporate a dif-
ferentiable method that accounts for hardware (HW) perfor-
mance metrics, including latency and power consumption.
Both latency and power consumption can be constrained in
a similar manner. Therefore, we utilize the notation Lhw



to represent both Lla and Lpw in Eq. (15) of the main text.
The loss function of a hardware metric is given by:

Lhw = log(cosh(Ehw(αp,αm,β)− Thw)) (16)

where Lhw represents the corresponding HW performance
constraint loss, Ehw is the HW performance with HW pa-
rameters β and compression rates αp,αm, Thw is the given
target HW performance.

To find the optimal solution that considers both accuracy
and HW performance metrics, we can co-explore the de-
sign space of compression ratio and HW simultaneously.
We use Gemmini [10], a deep-learning accelerator genera-
tion framework that can produce a wide range of realistic
accelerators from a flexible architecture template. The HW
parameters β are provided in Table 7.

We adopt iterative training method to optimize compres-
sion rates and HW parameters. To be specific, we first opti-
mize compression rate given HW parameters, and then opti-
mize HW parameters given compression rates. To make the
loss of hardware metric differentiable w.r.t. compression
rates, we formulate Ehw as

Eα
hw =

L∑
l=1

(αl + SG(1− αl))F ′(αl,β∗) (17)

where αl = max(αl−1, αl
p, α

l
m), and SG(·) is the operator

of stopping gradient. F ′ denotes the HW cost model, which
can calculate a hardware metric given compression rate and
HW parameters. ‘*’ indicates that the HW parameters are
fixed.

On the other hand, to make hardware metric differen-
tiable w.r.t. compression rates, we formulate Ehw as

Eβ
hw =

H∑
h=1

L∑
l=1

(βh + SG(1− βh))F ′(αl∗,β) (18)

where βh = GS(πh), πh is learnable parameter for h-th
HW parameter, and GS represents Gumbel-Softmax func-
tion. Here ‘*’ indicates that the compression rates are fixed.

With Eqn.(17) and Eqn.(18), we can update the compres-
sion rate and HW designs in a differentiable manner to sat-
isfy the target latency and power consumption.

C. More Results
In this section, we present detailed results from our ex-

periments. Firstly, we present the results obtained across
different FLOPs constraints for the DeiT [32] in Sec. C.1
and for the MAE [13] in Sec. C.2. In Sec. C.3, we
provide an detailed of the compression schedule that we
searched. Additionally, we investigate the transferability of
the searched compression schedules across different mod-
els in Sec. C.4. Finally, we demonstrate the effectiveness of
the compressed models by training them from scratch with
faster training speeds in Sec. C.5.

C.1. DeiT Models

Table 8 displays the comprehensive results of DeiT [32],
encompassing both off-the-shelf models and fine-tuned
models.

Table 8: Full DeiT Results. FT denotes fine-tuning the
compressed model for 30 epochs. Gray denotes the official
un-compressed pre-trained models (Baseline).

Model FLOPs(G) Acc.(%)
w/o FT w/ FT

ViT-T (DeiT)

1.3 72.13 -
0.6 70.36 71.11
0.7 71.16 71.70
0.8 71.74 72.18
0.9 71.91 72.39
1.0 72.12 72.46

ViT-S (DeiT)

4.6 79.82 -
2.3 78.74 79.39
2.5 79.09 79.61
2.7 79.40 79.64
2.9 79.58 79.83
3.1 79.71 79.90

ViT-B (DeiT)

17.6 81.82 -
8.7 78.98 80.61

10.0 80.63 81.17
10.4 80.97 81.30
11.5 81.50 81.59
12.5 81.75 81.80

C.2. MAE Models

Also, Table 9 presents the complete outcomes of
MAE [13], encompassing both off-the-shelf models and
fine-tuned models. We do not fine-tune ViT-H due to the
constraints of computational resources.

C.3. Seached Compression Schedule

Table 10 presents the detailed compression schedule that
we searched. Notably, in contrast to DeiT models, MAE
models tend to retain more tokens in the deep block. This
is because DeiT classifies solely based on the class token,
while MAE classifies based on the average of all image to-
kens.

C.4. Compression Schedule Transfer

The number of blocks in ViT-T, ViT-S, and ViT-B is 12,
facilitating the transferability of their block-wise compres-
sion rates. To investigate this, we transferred the compres-
sion rates obtained from ViT-T and ViT-B to ViT-S, as il-
lustrated in Fig. 6. We can observe that the compression
rate attained by ViT-S itself was optimal, whereas the trans-
fer of compression rate from ViT-T to ViT-S resulted in



Table 9: Full MAE Results. FT denotes fine-tuning the
compressed model for 30 epochs. Gray denotes the official
un-compressed pre-trained models (Baseline).

Model FLOPs(G) Acc.(%)
w/o FT w/ FT

ViT-B (MAE)

17.6 83.72 -
8.7 79.96 81.89
10.0 81.87 82.65
10.4 82.07 82.83
11.5 82.91 83.19

ViT-L (MAE)

61.6 85.95 -
31.0 84.65 85.31
34.7 85.19 85.45
38.5 85.45 85.61
42.3 85.56 85.63
46.1 85.76 85.84

ViT-H (MAE)

167.4 86.88 -
83.7 86.15 -
93.2 86.40 -

103.4 86.72 -
124.5 86.77 -

2.4 2.6 2.8 3.0 3.2
FLOPs (G)

78.00
78.25
78.50
78.75
79.00
79.25
79.50
79.75

To
p-

1 
Ac

c.
 (

%
)

ViT-S(Self)
ViT-S(ViT-T)
ViT-S(ViT-B)

Figure 6: Compression rate transfer. Transferring the
compression rate of ViT-B(DeiT) and ViT-T(DeiT) to ViT-
S(DeiT). Self indicates the compression rate learn in ViT-
S(DeiT).

a similar outcome. However, the transfer of compression
rate from ViT-B to ViT-S leads to significantly poorer per-
formance. This experiment verifies the ability of our pro-
posed DiffRate to learn block-wise compression rates suit-
able for different network structures based on their features.
Furthermore, it highlights that compression rates are some-
what transferable among similar network structures, such as
transferring the compression rate from ViT-T to ViT-S.

C.5. Train from Scratch

The compressed model also has the capability to train
from scratch using the searched compression rate. In this

scenario, redundant tokens are directly eliminated, resulting
in a faster training speed. As presented in Table 11, DiffRate
yields a 1.4× increase in training speed with only a−0.06%
performance degradation.

D. More Visualization
We utilize the approach proposed by ToMe [1] to gen-

erate visualizations of the merging results. Specifically, we
map each merged and pruned token back to its original in-
put patch. To visualize merged tokens, we assign each input
patch the average color of the merged tokens it belongs to
and apply a random border color to distinguish tokens. For
pruned tokens, we color their corresponding input patches
black. Fig. 7 provides additional examples of token com-
pression on images, extending the visualizations shown in
Fig. 5. Our proposed DiffRate approach effectively identi-
fies semantic objects, removes semantically irrelevant back-
ground tokens, and merges less-discriminative tokens in the
foreground. By combining the advantages of pruning and
merging through learnable compression rates, DiffRate can
reduce the token count with minimal loss of information.

E. Overhead of DiffRate
In this section, we offer the analysis about computational

overhead introduced by our proposed DiffRate framework.
For a given number of input tokens, denoted by N , and a
total of L blocks, the reparameterization trick introduces
2NL parameters and (N2+5N)L

2 FLOPs. For example, we
consider DeiT-S with N = 196 and L = 12, which re-
sults in only 4.7k additional parameters and 0.24M addi-
tional FLOPs. Furthermore, we evaluated the FLOPs of
the DiffRate module within one block, taking into account
the number of input tokens (N ), the embedding size (C),
and the number of merging tokens (Nm). The FLOPs of
the DiffRate module within a block can be approximated as
N logN+(N−Nm+1)NmC. For instance, in the case of
one DeiT-S block with N = 196, C = 384, and Nm = 20,
the FLOPs of the DiffRate module amount to 1.36M. Over-
all, the overhead of DiffRate framework is negligible com-
pared to the original 22M parameters and 4.6G FLOPs for
DeiT-S.

F. Extending to Hierarchical Architecture
In addition to the standard ViT [7], various ViT variants

have emerged, including EfficientFormer [22], Swin Trans-
former [26], CAFormer [41], among others. These modern
ViT variants commonly employ a hierarchical architecture,
dividing the network into multiple stages and progressively
reducing the resolution of the feature map. Within hierar-
chical architectures, downsampling operations, such as con-
volution or pooling, are used to achieve the reduction in res-
olution. These operations rely on maintaining the spatial in-



Image Block 4 Block 8 Block 12 Image Block 4 Block 8 Block 12

Figure 7: More visualization. Continuation of Fig 5.



Table 10: Searched Compression Schedule. We provide the block-wise kept tokens number for pruning and merging,
respectively.

Model FLOPs(G) Compression Schedule
Prune & Merge

ViT-T (DeiT)

0.6 [197,196,180,157,130,107,86,73,63,51,40,3]
[197,187,167,139,114,90,76,66,57,45,37,3]

0.7 [197,196,194,180,150,123,98,82,68,60,52,3]
[197,196,192,158,133,103,88,72,64,58,49,3]

0.8 [197,197,196,186,166,147,117,103,92,80,74,3]
[197,196,190,172,154,125,107,96,84,78,70,3]

0.9 [197,197,196,190,182,166,141,125,113,105,99,3]
[197,196,194,188,172,147,129,115,107,103,96,3]

1.0 [197,197,196,194,188,184,178,164,156,137,129,3]
[197,197,196,190,186,154,148,156,145,135,125,3]

ViT-S (DeiT)

2.3 [197,192,168,143,121,105,92,74,62,45,33,3]
[197,180,156,127,109,98,80,66,52,37,31,3]

2.5 [197,192,174,156,131,115,111,99,76,50,39,3]
[197,186,160,133,119,107,96,82,66,43,37,3]

2.7 [197,196,182,160,141,127,115,105,88,66,49,3]
[197,188,170,147,131,119,109,96,76,54,45,3]

2.9 [197,196,190,168,150,139,129,117,99,78,58,3]
[197,194,176,156,141,133,121,107,88,64,56,3]

3.1 [197,197,194,180,160,147,137,129,115,92,76,3]
[197,196,186,164,150,141,133,121,103,78,68,3]

ViT-B (DeiT)

8.7 [197,192,172,156,131,107,90,72,56,33,17,3]
[197,178,162,141,115,96,78,60,47,21,13,3]

10.0 [197,194,182,168,148,129,113,101,82,49,25,3]
[197,186,174,156,137,117,105,90,66,31,19,3]

10.4 [197,196,188,174,156,141,121,103,90,58,25,3]
[197,190,184,164,145,131,107,94,74,31,21,3]

11.5 [197,197,197,188,170,154,139,123,107,72,43,3]
[197,197,192,178,158,145,127,111,94,50,35,3]

12.5 [197,197,196,192,184,170,154,139,129,94,58,3]
[197,196,194,190,176,160,145,131,115,68,47,3]

ViT-B (MAE)

8.7 [197,192,166,143,119,103,86,72,54,43,37,23]
[197,176,150,127,107,92,76,58,47,41,23,23]

10.0 [197,194,173,154,135,120,108,92,76,64,52,40]
[197,181,160,141,122,116,95,80,67,60,40,40]

10.4 [197,195,179,159,140,122,105,100,89,71,56,45]
[197,187,166,145,125,109,102,97,75,64,45,45]

11.5 [197,196,182,172,162,147,131,109,101,94,70,49]
[197,192,178,164,150,133,115,101,96,82,49,49]

Table 11: Train from scratch. Train compressed ViT-S
(DeiT) from scratch with the official DeiT training receipt.

Model FLOPs Throughput Train Speed Acc.
ViT-S (DeiT) 4.6 5039 1× 79.82

DiffRate 2.3 8901 1.8× 79.41
DiffRate 2.9 6744 1.4× 79.76

tegrity of the feature map. However, traditional token com-
pression operations disrupt the spatial integrity by reducing
the number of tokens in an unstructured manner. As a re-
sult, conventional token compression techniques cannot be
directly applied to hierarchical architectures. To overcome
this challenge, we propose a token uncompression module
(see Fig.,8) that restores the compressed token sequence by
copying tokens based on their relationships, inspired by the



Compress Uncompress

Figure 8: An example of token uncompression. We only
consider token merging here.

Table 12: Appling DiffRate to CAFormer-S36 on
ImageNet-1k.

Method FLOPs(G) Top-1 Acc.(%)
w/o tuning w/ tuning

Baseline 8.0 84.45 -

DiffRate
6.0 84.21 84.32
5.6 83.92 84.21
5.2 83.49 84.03

Table 13: Downstream semantic segmentation task using
Semantic FPN with CAFormer-S36 backbone on ADE20K
dataset. FLOPs is calculated under the input scale of 512×
704.

Backbone FLOPs (G) mIoU (%) mAcc (%)
CAFormer-S36 77.2 41.05 51.50

w/ DiffRate 54.5 40.88 51.32

approaches in ToMeSD [2] and TCFormer [43]. By incor-
porating this module at the end of each stage, we can adapt
our proposed DiffRate method to hierarchical architectures.
Specifically, we apply DiffRate to the CAFormer [41], a
state-of-the-art ViT variant with four stages. DiffRate is
applied only to the third stage, as the first two stages con-
sist of convolution blocks, and the last stage incurs mini-
mal computational cost (6% in CAFormer-S36). As shown
in Table 12, DiffRate achieves a significant 25% reduction
in FLOPs with a marginal sacrifice of 0.24% in accuracy
without additional fine-tuning. Moreover, when fine-tuned,
DiffRate achieves a remarkable 35% reduction in FLOPs
with a minimal accuracy drop of only 0.42%.

G. Extending to Downstream Tasks
By incorporating the introduced uncompression module

in Fig. 8, DiffRate can also be applied to the model for
downstream tasks. We begin by transferring the uncom-
pressed pre-trained CAFormer-S36 model to ADE20K [44],
following the settings of PVT [33]. Subsequently, DiffRate
is applied to the third stage of the trained segmentation
model without further fine-tuning. The results in Table,13
demonstrate that DiffRate achieves a significant 30% reduc-
tion in FLOPs with negligible performance degradation.


